Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations

被引:8
作者
Berthon, C. [1 ]
Chalons, C. [2 ]
Cornet, S. [3 ]
Sperone, G. [4 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, CNRS UMR 6629, 2 Rue Houssiniere,BP 92208, F-44322 Nantes, France
[2] Univ Versailles St Quentin En Yvelines, Lab Math Versailles, UMR 8100, UFR Sci, Batiment Fermat,45 Ave Etats Unis, F-78035 Versailles, France
[3] Ecole Cent Paris, F-92290 Chatenay Malabry, France
[4] Univ Chile, Dept Ingn Matemat, Beauchef 851, Santiago, Chile
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2016年 / 47卷 / 01期
关键词
Shallow-water equations; steady states; finite volume schemes; well-balanced property; positive preserving scheme; DISCONTINUOUS GALERKIN METHODS; GODUNOV-TYPE SCHEMES; HYPERBOLIC SYSTEMS; CONSERVATION-LAWS; RECONSTRUCTION;
D O I
10.1007/s00574-016-0126-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work is focused on the numerical approximation of the shallow water equations. When studying this problem, one faces at least two important issues, namely the ability of the scheme to preserve the positiveness of the water depth, along with the ability to capture the stationary states.We propose here aGodunov-typemethod that fully satisfies the previous conditions, meaning that the method is in particular able to preserve the steady states with non-zero velocity.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 23 条
  • [1] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
    Audusse, E
    Bouchut, F
    Bristeau, MO
    Klein, R
    Perthame, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) : 2050 - 2065
  • [2] A SIMPLE WELL-BALANCED AND POSITIVE NUMERICAL SCHEME FOR THE SHALLOW-WATER SYSTEM
    Audusse, Emmanuel
    Chalons, Christophe
    Ung, Philippe
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1317 - 1332
  • [3] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [4] Berthon C., 2015, MATH COMP IN PRESS
  • [5] Efficient well-balanced hydrostatic upwind schemes for shallow-water equations
    Berthon, Christophe
    Foucher, Francoise
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (15) : 4993 - 5015
  • [6] Bouchut F., 2004, FRONT MATH
  • [7] A SUBSONIC-WELL-BALANCED RECONSTRUCTION SCHEME FOR SHALLOW WATER FLOWS
    Bouchut, Francois
    Morales de Luna, Tomas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1733 - 1758
  • [8] Castro M. J., 2007, MATH MOD METH APPL S, V17, P2065
  • [9] Chalons C., 2010, MATH MODELS METHODS, V20
  • [10] Chinnayya A., 2004, Int. J. Finite Volumes, V1, P1