On an equation arising in natural convection boundary layer flow in a porous medium

被引:0
作者
Merkin, J. H. [1 ]
Lok, Y. Y. [2 ]
Pop, I [3 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Sains Malaysia, Sch Distance Educ, Math Div, Nibong Tebal Pulau Pinan 11800, Malaysia
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca 400084, Romania
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 05期
关键词
Boundary layer flow; Boundary value problem; asymptotic solutions; SIMILARITY SOLUTIONS; STAGNATION POINT; VERTICAL PLATE; SOURCE-TERM;
D O I
10.1007/s00033-019-1187-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of a boundary value problem treated previously by Magyari et al. (ZAMP 53:782-793, 2002a; Transp Porous Medium 46:91-102, 2002b), Zhang (Math Anal Appl 417:361-375, 2014) and Paullet (Appl Math E Notes 14:123-126, 2014) for a prescribed wall temperature and by Zhang (Appl Math Comput 339:367-373, 2018) for a prescribed wall heat flux is considered. The problem involves a parameter lambda and an exponent p. Numerical solutions are obtained for representative values of lambda and p, a feature of which is the existence of critical values lambda(c) of lambda with two solution branches in lambda > lambda(c), with lambda(c) dependent on p. Asymptotic solutions for large lambda and large p are derived for both types of boundary condition. For large lambda, the nature of the solution is essentially different on upper and on the lower branches with similar feature being seen in the behaviour for p large.
引用
收藏
页数:14
相关论文
共 17 条
[1]  
BANKS WHH, 1983, J MEC THEOR APPL, V2, P375
[2]   FLOW PAST A STRETCHING PLATE [J].
CRANE, LJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (04) :645-&
[3]   Effect of the source term on steady free convection boundary layer flows over an vertical plate in a porous medium. Part I [J].
Magyari, E. ;
Pop, I. ;
Postelnicu, A. .
TRANSPORT IN POROUS MEDIA, 2007, 67 (01) :49-67
[4]   The "missing" similarity boundary-layer flow over a moving plane surface [J].
Magyari, E ;
Pop, I ;
Keller, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (05) :782-793
[5]   The 'missing' self-similar free convection boundary-layer flow over a vertical permeable surface in a porous medium [J].
Magyari, E ;
Pop, I ;
Keller, B .
TRANSPORT IN POROUS MEDIA, 2002, 46 (01) :91-102
[6]   Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium. Part II [J].
Magyari, Eugen ;
Pop, Ioan ;
Postelnicu, Adrian .
TRANSPORT IN POROUS MEDIA, 2007, 67 (02) :189-201
[7]   THE EFFECTS OF AN OUTER FLOW ON THE UNSTEADY FREE CONVECTION BOUNDARY LAYER NEAR A STAGNATION POINT IN A HEAT-GENERATING POROUS MEDIUM [J].
Merkin, J. H. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2014, 67 (03) :419-444
[8]   Unsteady free convective boundary-layer flow near a stagnation point in a heat-generating porous medium [J].
Merkin, J. H. .
JOURNAL OF ENGINEERING MATHEMATICS, 2013, 79 (01) :73-89
[9]   Natural Convection Boundary-Layer Flow in a Porous Medium with Temperature-Dependent Boundary Conditions [J].
Merkin, J. H. ;
Pop, I. .
TRANSPORT IN POROUS MEDIA, 2010, 85 (02) :397-414
[10]   MIXED CONVECTION BOUNDARY-LAYER SIMILARITY SOLUTIONS - PRESCRIBED WALL HEAT-FLUX [J].
MERKIN, JH ;
MAHMOOD, T .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (01) :51-68