A relative entropy method to measure non-exponential random data

被引:8
作者
Liang, Yingjie [1 ]
Chen, Wen [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, Nanjing 210098, Jiangsu, Peoples R China
关键词
Relative entropy; Non-exponential random data; Fractional order moment; Logarithmic moment; Tail statistics; Mittag-Leffler distribution; POWER-LAW; LIFE;
D O I
10.1016/j.physleta.2014.11.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper develops a relative entropy method to measure non-exponential random data in conjunction with fractional order moment, logarithmic moment and tail statistics of Mittag-Leffler distribution. The distribution of non-exponential random data follows neither the exponential distribution nor exponential decay. The proposed strategy is validated by analyzing the experiment data, which are generated by Monte Carlo method using Mittag-Leffler distribution. Compared with the traditional Shannon entropy, the relative entropy method is simple to be implemented, and its corresponding relative entropies approximated by the fractional order moment, logarithmic moment and tail statistics can easily and accurately detect the non-exponential random data. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 31 条
[21]   A survey on computing Levy stable distributions and a new MATLAB toolbox [J].
Liang, Yingjie ;
Chen, Wen .
SIGNAL PROCESSING, 2013, 93 (01) :242-251
[22]   On the Mittag-Leffler distributions [J].
Lin, GD .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 74 (01) :1-9
[23]   Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy [J].
Magin, Richard L. ;
Ingo, Carson ;
Colon-Perez, Luis ;
Triplett, William ;
Mareci, Thomas H. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 :39-43
[24]   The applicability of power-law frequency statistics to floods [J].
Malamud, Bruce D. ;
Turcotte, Donald L. .
JOURNAL OF HYDROLOGY, 2006, 322 (1-4) :168-180
[25]   Stability of the Characterization Results in Terms of Hazard Rate and Mean Residual Life for the Univariate and Bivariate Setups [J].
Roy, Dilip ;
Roy, Rishideep .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (09) :1583-1598
[26]  
Tao H., 2007, IEEE T IND ELECTRON, V54, P548
[27]   A simple model for cooperative and non-exponential processes in non-crystalline polymers [J].
Torregrosa Cabanilles, C. ;
Molina-Mateo, J. ;
Meseguer Duenas, J. M. ;
Gomez Ribelles, J. L. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (02) :367-370
[28]  
Wang B. J., 2009, THESIS CHINA
[29]  
Wang BJ, 2009, LECT NOTES COMPUT SC, V5441, P179, DOI 10.1007/978-3-642-00599-2_23
[30]   On the Cole-Cole relaxation function and related Mittag-Leffler distribution [J].
Weron, K ;
Kotulski, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 232 (1-2) :180-188