A relative entropy method to measure non-exponential random data

被引:8
作者
Liang, Yingjie [1 ]
Chen, Wen [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Inst Soft Matter Mech, Nanjing 210098, Jiangsu, Peoples R China
关键词
Relative entropy; Non-exponential random data; Fractional order moment; Logarithmic moment; Tail statistics; Mittag-Leffler distribution; POWER-LAW; LIFE;
D O I
10.1016/j.physleta.2014.11.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper develops a relative entropy method to measure non-exponential random data in conjunction with fractional order moment, logarithmic moment and tail statistics of Mittag-Leffler distribution. The distribution of non-exponential random data follows neither the exponential distribution nor exponential decay. The proposed strategy is validated by analyzing the experiment data, which are generated by Monte Carlo method using Mittag-Leffler distribution. Compared with the traditional Shannon entropy, the relative entropy method is simple to be implemented, and its corresponding relative entropies approximated by the fractional order moment, logarithmic moment and tail statistics can easily and accurately detect the non-exponential random data. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 31 条
[1]   Entropy as a measure of diffusion [J].
Aghamohammadi, Amir ;
Fatollahi, Amir H. ;
Khorrami, Mohammad ;
Shariati, Ahmad .
PHYSICS LETTERS A, 2013, 377 (28-30) :1677-1681
[2]   Fractional-order formulation of power-law and exponential distributions [J].
Alexopoulos, A. ;
Weinberg, G. V. .
PHYSICS LETTERS A, 2014, 378 (34) :2478-2481
[3]  
[Anonymous], J IND SOC PROBAB STA
[4]   A FRACTAL APPROACH TO ENTROPY AND DISTRIBUTION-FUNCTIONS [J].
BUYUKKILIC, F ;
DEMIRHAN, D .
PHYSICS LETTERS A, 1993, 181 (01) :24-28
[5]   Estimation of Mittag-Leffler Parameters [J].
Cahoy, Dexter O. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (02) :303-315
[6]   A random telegraph signal of Mittag-Leffler type [J].
Ferraro, Simone ;
Manzini, Michele ;
Masoero, Aldo ;
Scalas, Enrico .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (19) :3991-3999
[7]   Robust risk management [J].
Fertis, Apostolos ;
Baes, Michel ;
Luethi, Hans-Jakob .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 222 (03) :663-672
[8]   Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation [J].
Fulger, Daniel ;
Scalas, Enrico ;
Germano, Guido .
PHYSICAL REVIEW E, 2008, 77 (02)
[9]   Power law approximations of movement network data for modeling infectious disease spread [J].
Geilhufe, Marc ;
Held, Leonhard ;
Skrovseth, Stein Olav ;
Simonsen, Gunnar S. ;
Godtliebsen, Fred .
BIOMETRICAL JOURNAL, 2014, 56 (03) :363-382
[10]   On the concavity of the consumption function with the time varying discount rate [J].
Gong, Liutang ;
Zhong, Ruquan ;
Zou, Heng-fu .
ECONOMICS LETTERS, 2012, 117 (01) :99-101