Gaussian Curvature Estimates for the Convex Level Sets of p-Harmonic Functions

被引:39
作者
Ma, Xi-Nan [1 ]
Ou, Qianzhong [2 ]
Zhang, Wei [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Hezhou Univ, Dept Math, Hezhou 542800, Guangxi Prov, Peoples R China
基金
美国国家科学基金会;
关键词
ELLIPTIC-EQUATIONS; PARALLEL PLANES; SURFACES; CURVES; RINGS;
D O I
10.1002/cpa.20318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a positive lower bound for the Gaussian curvature of the convex level sets of p-harmonic functions with the Gaussian curvature of the boundary and the norm of the gradient on the boundary. Combining the deformation process, this estimate gives a new approach to studying the convexity of the level sets of the p-harmonic function. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:935 / 971
页数:37
相关论文
共 22 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], ENCY MATH ITS APPL
[3]  
Bian B., MICROSCOPIC CONVEXIT
[4]   Quasiconcave Solutions to Elliptic Problems in Convex Rings [J].
Bianchini, Chiara ;
Longinetti, Marco ;
Salani, Paolo .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1565-1589
[5]  
Caffarelli L., 1986, IV. Starshaped Compact Weingarten Hypersurfaces, P1
[6]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[7]   CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) :431-456
[8]  
Do Carmo M.P., 2016, Differential Geometry of Curves and Surfaces: Revised and Updated, V2nd
[9]   Convexity estimates for nonlinear elliptic equations and application to free boundary problems [J].
Dolbeault, J ;
Monneau, W .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06) :903-926
[10]  
Gabriel RM., 1957, J. Lond. Math. Soc, V32, P286, DOI DOI 10.1112/JLMS/S1-32.3.286