Simple matrix methods for analyzing diffusion models of choice probability, choice response time, and simple response time

被引:97
作者
Diederich, A
Busemeyer, JR
机构
[1] Int Univ Bremen, Sch Humanities & Social Sci, D-28725 Bremen, Germany
[2] Indiana Univ, Dept Psychol, Bloomington, IN 47405 USA
关键词
diffusion models; Wiener process; Ornstein-Uhlenbeck process; Markov chains; DECISION FIELD-THEORY; RANDOM-WALK MODEL; STOCHASTIC-MODELS; PSYCHOLOGICAL DISCRIMINATION; INFORMATION; CONNECTIONIST; ACCURACY; SPEED;
D O I
10.1016/S0022-2496(03)00003-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Diffusion processes (e.g., Wiener process, Ornstein-Uhlenbeck process) are powerful approaches to model human information processes in a variety of psychological tasks. Lack of mathematical tractability, however, has prevented broad applications of these models to empirical data. This tutorial explains step by step, using a matrix approach, how to construct these models, how to implement them on a computer, and how to calculate the predictions made by these models. In particular, we present models for binaries choices for unidimensional and multiattribute choice alternatives; for simple reaction time tasks; and for three alternatives choice problems. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:304 / 322
页数:19
相关论文
共 47 条
[1]  
[Anonymous], 2007, CLASSICS MATH
[2]   STOCHASTIC CHOICE HEURISTICS [J].
ASCHENBRENNER, KM ;
ALBERT, D ;
SCHMALHOFER, F .
ACTA PSYCHOLOGICA, 1984, 56 (1-3) :153-166
[3]   A BIASED RANDOM-WALK MODEL FOR 2 CHOICE REACTION-TIMES [J].
ASHBY, FG .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1983, 27 (03) :277-297
[4]  
Ashby FG, 2000, J MATH PSYCHOL, V44, P310, DOI 10.1006/jmps.1999.1249
[5]   A STOCHASTIC-MODEL FOR INDIVIDUAL CHOICE BEHAVIOR [J].
AUDLEY, RJ .
PSYCHOLOGICAL REVIEW, 1960, 67 (01) :1-15
[6]   SOME ALTERNATIVE STOCHASTIC-MODELS OF CHOICE [J].
AUDLEY, RJ ;
PIKE, AR .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1965, 18 (02) :207-225
[7]  
Bhat U.N., 1984, ELEMENTS APPL STOCHA
[8]  
Bhattacharya R., 1990, STOCHASTIC PROCESSES
[9]   DECISION FIELD-THEORY - A DYNAMIC COGNITIVE APPROACH TO DECISION-MAKING IN AN UNCERTAIN ENVIRONMENT [J].
BUSEMEYER, JR ;
TOWNSEND, JT .
PSYCHOLOGICAL REVIEW, 1993, 100 (03) :432-459
[10]   Survey of decision field theory [J].
Busemeyer, JR ;
Diederich, A .
MATHEMATICAL SOCIAL SCIENCES, 2002, 43 (03) :345-370