Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency

被引:16
作者
Coakley, Kathryn E. [1 ,7 ]
Douglas, Teresa D. [2 ]
Goodman, Michael [1 ,3 ]
Ramakrishnan, Usha [1 ,4 ]
Dobrowolski, Steven F. [5 ]
Singh, Rani H. [1 ,6 ]
机构
[1] Emory Univ, Laney Grad Sch, Doctoral Program Nutr & Hlth Sci, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Epidemiol, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
[4] Emory Univ, Hubert Dept Global Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
[5] Univ Pittsburgh, Dept Pathol, Med Ctr, Pittsburgh, PA USA
[6] Emory Univ, Sch Med, Dept Human Genet & Pediat, Atlanta, GA USA
[7] 2165 North Decatur Rd, Decatur, GA 30033 USA
关键词
X-RAY ABSORPTIOMETRY; PHENYLKETONURIC PATIENTS; CLINICAL-PRACTICE; CAFFEINE INTAKE; VITAMIN-D; WOMEN; OSTEOPOROSIS; DENSITOMETRY; METAANALYSIS; METABOLISM;
D O I
10.1007/s10545-015-9910-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Phenylalanine hydroxylase (PAH) deficiency is an inherited metabolic disorder requiring life-long restriction of dietary protein and phenylalanine-free medical food. Low bone mineral density (BMD) is reported, but factors associated with BMD Z-score (standard deviations from normal) are unknown. We examined associations between clinical and dietary parameters and total BMD Z-score in PAH deficiency patients, and developed models to predict Z-score. Data collected from patients > 4 years of age (n = 88; mean age = 18.8 y; 61 % female) included demographic, clinical, laboratory, and dietary intakes. Adjusted Spearman's correlation coefficients were calculated between parameters and TBMD Z-score, measured by dual energy x-ray absorptiometry (DXA). Parameters approaching significance (p-value < 0.10) were candidate predictors for four linear regression models predicting TBMD Z-score. To validate, model-predicted Z-scores were compared to DXA Z-scores. Mean TBMD Z-score was -0.326; 18 (20.4 %) had Z-score < -1. Z-scores were positively correlated with dietary vitamin D, calcium, and medical food intake and compliance with prescription, and negatively with dietary carbohydrate, sugar, caffeine intake, glycemic load, and prescribed medical food (grams protein/day; p-value < 0.05). The best model included medical food compliance, medical food intake, caffeine intake, and bone-specific alkaline phosphatase (r-square = 0.364). This model predicted Z-score category [normal or low (<-1)] with sensitivity = 66.7 %, likelihood ratio = 14.7, and AUC = 0.83 compared to DXA Z-score. No subjects had low BMD for chronological age (Z-score a parts per thousand currency signaEuro parts per thousand a'2). Compliance with medical food prescription was the strongest predictor of TBMD Z-score. One model, if validated in a separate sample of patients with more cases of low BMD, showed potential to estimate TBMD Z-score using routine clinical patient parameters.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 43 条
[1]  
ABIM, 2012, BON DENS TESTS
[2]   Predictive data mining in clinical medicine: Current issues and guidelines [J].
Bellazzi, Riccardo ;
Zupan, Blaz .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2008, 77 (02) :81-97
[3]   Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club [J].
Bergmann, P. ;
Body, J. -J. ;
Boonen, S. ;
Boutsen, Y. ;
Devogelaer, J. -P. ;
Goemaere, S. ;
Kaufman, J. -M. ;
Reginster, J. -Y. ;
Gangji, V. .
INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2009, 63 (01) :19-26
[4]   Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis [J].
Bhupathiraju, Shilpa N. ;
Tobias, Deirdre K. ;
Malik, Vasanti S. ;
Pan, An ;
Hruby, Adela ;
Manson, JoAnn E. ;
Willett, Walter C. ;
Hu, Frank B. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2014, 100 (01) :218-232
[5]   Phenylketonuria Scientific Review Conference: State of the science and future research needs [J].
Camp, Kathryn M. ;
Parisi, Melissa A. ;
Acosta, Phyllis B. ;
Berry, Gerard. T. ;
Bilder, Deborah A. ;
Blau, Nenad ;
Bodamer, Olaf A. ;
Brosco, Jeffrey P. ;
Brown, Christine S. ;
Burlina, Alberto B. ;
Burton, Barbara K. ;
Chang, Christine S. ;
Coates, Paul M. ;
Cunningham, Amy C. ;
Dobrowolski, Steven F. ;
Ferguson, John H. ;
Franklin, Thomas D. ;
Frazier, Dianne M. ;
Grange, Dorothy K. ;
Greene, Carol L. ;
Groft, Stephen C. ;
Harding, Cary O. ;
Howell, R. Rodney ;
Huntington, Kathleen L. ;
Hyatt-Knorr, Henrietta D. ;
Jevaji, Indira P. ;
Levy, Harvey L. ;
Lichter-Konecki, Uta ;
Lindegren, Mary Lou ;
Lloyd-Puryear, Michele A. ;
Matalon, Kimberlee ;
MacDonald, Anita ;
McPheeters, Melissa L. ;
Mitchell, John J. ;
Mofidi, Shideh ;
Moseley, Kathryn D. ;
Mueller, Christine M. ;
Mulberg, Andrew E. ;
Nerurkar, Lata S. ;
Ogata, Beth N. ;
Pariser, Anne R. ;
Prasad, Suyash ;
Pridjian, Gabriella ;
Rasmussen, Sonja A. ;
Reddy, Uma M. ;
Rohr, Frances J. ;
Singh, Rani H. ;
Sirrs, Sandra M. ;
Stremer, Stephanie E. ;
Tagle, Danilo A. .
MOLECULAR GENETICS AND METABOLISM, 2014, 112 (02) :87-122
[6]   Phenylketonuria: an update [J].
Cederbaum, S .
CURRENT OPINION IN PEDIATRICS, 2002, 14 (06) :702-706
[7]   Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients [J].
de Groot, Martijn J. ;
Hoeksma, Marieke ;
van Rijn, Margreet ;
Slart, Riemer H. J. A. ;
van Spronsen, Francjan J. .
MOLECULAR GENETICS AND METABOLISM, 2012, 105 (04) :566-570
[8]   Bone health in phenylketonuria: a systematic review and meta-analysis [J].
Demirdas, Serwet ;
Coakley, Katie E. ;
Bisschop, Peter H. ;
Hollak, Carla E. M. ;
Bosch, Annet M. ;
Singh, Rani H. .
ORPHANET JOURNAL OF RARE DISEASES, 2015, 10
[9]   Follow up of phenylketonuria patients [J].
Demirkol, M. ;
Gizewska, M. ;
Giovannini, M. ;
Walter, J. .
MOLECULAR GENETICS AND METABOLISM, 2011, 104 :S31-S39
[10]  
Di Daniele N, 2004, PHARMACOL RES, V50, P637, DOI [10.1016/S1043-6618(04)00145-8, 10.1016/j.phrs.2004.05.010]