Constructions of Optimal 2-D Optical Orthogonal Codes via Generalized Cyclotomic Classes

被引:17
作者
Cai, Han [1 ]
Liang, Hongbin [2 ]
Tang, Xiaohu [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu 610031, Peoples R China
[3] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
基金
美国国家科学基金会;
关键词
Optical code division access system; two-dimensional optical orthogonal code (2-D OOC); AM-OPPW; AM-OPPTS; generalized cyclotomic classes; COMBINATORIAL CONSTRUCTIONS; FAMILIES; DESIGN; BOUNDS;
D O I
10.1109/TIT.2014.2370054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical orthogonal codes (OOCs) are widely used as spreading codes in optical fiber networks. In this paper, a bound on the code size of 2-D OOCs with both at most one-pulse per wavelength (AM-OPPW) and at most one-pulse per time slot (AM-OPPTS) is derived. Accordingly, two constructions of optimal 2-D OOCs with both AM-OPPW and AM-OPPTS are proposed via the generalized cyclotomic classes. Furthermore, optimal 2-D OOC with AM-OPPW can be also constructed by adding more codewords into the 2-D OOCs with both AM-OPPW and AM-OPPTS.
引用
收藏
页码:688 / 695
页数:8
相关论文
共 28 条
[1]   Families of optimal OOCs with λ=2 [J].
Alderson, Tim L. ;
Mellinger, Keith E. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) :3722-3724
[2]  
Apostol T. M., 1998, Introduction to analytic number theory
[3]   Combinatorial Constructions for Optimal Two-Dimensional Optical Orthogonal Codes [J].
Cao, Haitao ;
Wei, Ruizhong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) :1387-1394
[4]   Combinatorial constructions of optimal optical orthogonal codes with weight 4 [J].
Chang, YX ;
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) :1283-1292
[5]   A new recursive construction for optical orthogonal codes [J].
Chu, WS ;
Golomb, SW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :3072-3076
[6]   OPTICAL ORTHOGONAL CODES - DESIGN, ANALYSIS, AND APPLICATIONS [J].
CHUNG, FRK ;
SALEHI, JA ;
WEI, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :595-604
[7]   OPTICAL ORTHOGONAL CODES - NEW BOUNDS AND AN OPTIMAL CONSTRUCTION [J].
CHUNG, H ;
KUMAR, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :866-873
[8]   Asymptotically Optimal Optical Orthogonal Codes With New Parameters [J].
Chung, Jin-Ho ;
Yang, Kyeongcheol .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) :3999-4005
[9]  
Cunsheng Ding, 1998, Finite Fields and their Applications, V4, P140, DOI 10.1006/ffta.1998.0207
[10]   Cyclotomic optical orthogonal codes of composite lengths [J].
Ding, CS ;
Xing, CP .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2004, 52 (02) :263-268