AN Lp REGULARITY THEORY FOR HARMONIC MAPS

被引:2
作者
Moser, Roger [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
YANG-MILLS FIELDS; WEAK HEAT FLOWS; CONSERVATION-LAWS; BIHARMONIC MAPS; UNIQUENESS; EVOLUTION; SURFACE; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the harmonic map heat flow, we consider maps between Riemannian manifolds such that the tension field belongs to an L-p-space. Under an appropriate smallness condition, a certain degree of regularity follows. For suitable solutions of the harmonic map heat flow, we have a partial regularity result as a consequence.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]   COMPOSITION OPERATORS ON POTENTIAL SPACES [J].
ADAMS, DR ;
FRAZIER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :155-165
[3]  
[Anonymous], 1959, Estratto Ann. Sc. Norm. Super. Pisa
[4]   ON THE SINGULAR SET OF STATIONARY HARMONIC MAPS [J].
BETHUEL, F .
MANUSCRIPTA MATHEMATICA, 1993, 78 (04) :417-443
[5]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[6]  
CHANG KC, 1989, ANN I H POINCARE-AN, V6, P363
[7]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[8]  
CHEN YM, 1995, COMMUN PUR APPL MATH, V48, P429
[9]   DIRICHLET PROBLEMS FOR HEAT FLOWS OF HARMONIC MAPS IN HIGHER DIMENSIONS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (04) :557-565
[10]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247