Towards fast-charging technologies in Li+/Na+ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors

被引:59
作者
Huang, Haijian [1 ]
Niederberger, Markus [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mat, Lab Multifunct Mat, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
关键词
ELECTROCHEMICAL ENERGY-STORAGE; LI-ION INTERCALATION; LITHIUM METAL ANODE; RECHARGEABLE BATTERIES; ELECTRODE MATERIALS; HOLLOW STRUCTURES; RUTHENIUM OXIDE; PERFORMANCE; CARBON; SUPERCAPACITOR;
D O I
10.1039/c9nr05732c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the discovery of the pseudocapacitive behavior in RuO2 by Sergio Trasatti and Giovanni Buzzanca in 1971, materials with pseudocapacitance have been regarded as promising candidates for high-power energy storage. Pseudocapacitance-involving energy storage is predominantly based on faradaic redox reactions, but at the same time the charge storage is not limited by solid-state ion diffusion. Besides the search for pseudocapacitive materials, their implementation into non-aqueous hybrid capacitors stands for the strategy to increase power density by a rational design of the battery structure. Composed of a battery-type anode and a capacitor-type cathode, such devices show great promise to integrate the merits of both batteries and capacitors. Today, the availability of fast-charging technologies is of fundamental importance for establishing electric vehicles on a mass scale. Therefore, from the perspective of materials and battery design, understanding the basics and the recent developments of pseudocapacitive materials and non-aqueous hybrid capacitors is of great importance. With this goal in mind, we introduce here the fundamentals of pseudocapacitance and non-aqueous hybrid capacitors. In addition, we provide an overview of the latest developments in this fast growing research field.
引用
收藏
页码:19225 / 19240
页数:16
相关论文
共 121 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[6]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation [J].
Chen, George Z. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (03) :245-255
[9]   Surface-Amorphous and Oxygen-Deficient Li3VO4-δ as a Promising Anode Material for Lithium-Ion Batteries [J].
Chen, Liang ;
Jiang, Xiaolei ;
Wang, Nana ;
Yue, Jie ;
Qian, Yitai ;
Yang, Jian .
ADVANCED SCIENCE, 2015, 2 (09)
[10]   Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage [J].
Chen, Ruiyong ;
Knapp, Michael ;
Yavuz, Murat ;
Ren, Shuhua ;
Witte, Ralf ;
Heinzmann, Ralf ;
Hahn, Horst ;
Ehrenberg, Helmut ;
Indris, Sylvio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :1482-1488