Random Krylov spaces over finite fields

被引:25
作者
Brent, RP [1 ]
Gao, SH
Lauder, AGB
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
finite field; vector space; linear transformation; Krylov subspace;
D O I
10.1137/S089548010139388X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by a connection with block iterative methods for solving linear systems over finite fields, we consider the probability that the Krylov space generated by a fixed linear mapping and a random set of elements in a vector space over a finite field equals the space itself. We obtain an exact formula for this probability and from it we derive good lower bounds that approach 1 exponentially fast as the size of the set increases.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 16 条
[1]  
ADKINS WA, 1992, GRAD TEXTS MATH, V136
[2]   DETERMINANTS AND RANKS OF RANDOM MATRICES OVER ZM [J].
BRENT, RP ;
MCKAY, BD .
DISCRETE MATHEMATICS, 1987, 66 (1-2) :35-49
[3]   SOLVING LINEAR-EQUATIONS OVER GF(2) - BLOCK LANCZOS-ALGORITHM [J].
COPPERSMITH, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 192 :33-60
[4]   SOLVING HOMOGENEOUS LINEAR-EQUATIONS OVER GF(2) VIA BLOCK WIEDEMANN ALGORITHM [J].
COPPERSMITH, D .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :333-350
[5]  
GAO S, IN PRESS MATH COMP
[6]  
Gao S., 1997, FINITE FIELDS APPL, V3, P141, DOI DOI 10.1006/FFTA.1996.0177
[7]  
GAO S, 1994, CONT MATH, V168, P101
[9]  
KALTOFEN E, 1994, P INT S SYMB ALG COM, P90
[10]  
Lansberg G., 1893, J REINE ANGEW MATH, V3, P87