Rotational motion control of a spacecraft

被引:16
作者
Wisniewski, R [1 ]
Kulczycki, P
机构
[1] Aalborg Univ, Dept Control Engn, DK-9220 Aalborg, Denmark
[2] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
attitude control; differential geometric methods; nonlinear control; stability theory;
D O I
10.1109/TAC.2003.809781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note describes a systematic procedure for the control synthesis of a rigid spacecraft using the energy shaping method. The geometric concept of a mechanical system in a coordinate-independent form is used to derive a control algorithm for the Euler-Poincare equations. The main result of this note is a specialization of the method on the unit quaternion group. This note is concluded with the examples of the potential functions and implementation for the three-axis attitude control problem.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 12 条
[1]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[2]   Tracking for fully actuated mechanical systems: a geometric framework [J].
Bullo, F ;
Murray, RM .
AUTOMATICA, 1999, 35 (01) :17-34
[3]   Stabilization of relative equilibria for underactuated systems on Riemannian manifolds [J].
Bullo, F .
AUTOMATICA, 2000, 36 (12) :1819-1834
[4]   State feedback H-infinity-suboptimal control of a rigid spacecraft [J].
Dalsmo, M ;
Egeland, O .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1186-1189
[5]  
Goldstein H., 1980, Classical Mechanics
[6]  
KODITSCHEK DE, 1989, DYNAMICS CONTROL MUL, V97, P131
[7]  
Lee J., 1997, Riemannian Manifolds: An Introduction to Curvature
[8]  
LEWIS AD, 1995, THESIS CALTECH PASAD
[9]  
Marsden J. E., 1999, Introduction to Mechanics and Symmetry-A Basic Exposition of Classical Mechanical Systems, V2nd ed., DOI 10.1007/978-0-387-21792-5
[10]  
Nijmeijer H., 1990, NONLINEAR DYNAMICAL, V175