Geometry and topology of the space of Kahler metrics on singular varieties

被引:13
作者
Di Nezza, Eleonora [1 ,2 ]
Guedj, Vincent [3 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Paris Saclay, IHES, F-91400 Bures Sur Yvette, France
[3] Univ Toulouse, Inst Math Toulouse, CNRS UPS, F-31062 Toulouse 9, France
关键词
Kahler metrics; Monge-Ampere equation; Mabuchi distance; COMPLEX MONGE-AMPERE; ENERGY; REGULARITY; EQUATIONS; GEODESICS;
D O I
10.1112/S0010437X18007170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y be a compact Kahler normal space and let alpha is an element of H-BC(1,1) (Y) be a Kahler class. We study metric properties of the space H-alpha of Kahler metrics in alpha using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kahler-Einstein metrics on Q-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.
引用
收藏
页码:1593 / 1632
页数:40
相关论文
共 52 条
[1]  
[Anonymous], Journal fur die Reine und Angewandte Mathematik
[2]  
[Anonymous], 1997, INVENT MATH
[3]  
[Anonymous], 1999, NO CALIFORNIA SYMPLE
[4]  
[Anonymous], 2012, Progr. Math.
[5]   On cscK resolutions of conically singular cscK varieties [J].
Arezzo, Claudio ;
Spotti, Cristiano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (02) :474-494
[6]  
AUBIN T, 1978, B SCI MATH, V102, P63
[7]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[8]  
Berman R, 2015, PREPRINT
[9]  
Berman R., 2016, PREPRINT
[10]  
Berman R.J., 2013, PREPRINT