EXISTENCE OF FIXED POINT BY USING F-CONTRACTION AND F-SUZUKI CONTRACTION IN MODULAR FUNCTION SPACES

被引:0
作者
Reena [1 ]
Panwar, Anju [2 ]
机构
[1] Govt PG Coll Women, Rohtak 124001, Haryana, India
[2] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2021年 / 13卷 / 01期
关键词
F-contraction; Modular function spaces; Fixed point; F-Suzuki contraction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the notions of F-contraction and F-Suzuki contraction in context of modular function spaces and to prove some fixed point results. Further we provide some examples to support our main results.
引用
收藏
页码:92 / 105
页数:14
相关论文
共 15 条
  • [1] New fixed point theorems for generalized F-contractions in complete metric spaces
    Ahmad, Jamshaid
    Al-Rawashdeh, Ahmed
    Azam, Akbar
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [2] [Anonymous], 1950, MODULAR SEMIORDERED
  • [3] Fixed point iteration processes for asymptotic pointwise nonexpansive mapping in modular function spaces
    Bin Dehaish, Buthinah A.
    Kozlowski, W. M.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [4] Dhompongsa S., 2006, SCI MATH JAPON, V53, P139
  • [5] Jain R., 2018, Inter. J. Pure Appl. Math., V120, P177
  • [6] Fixed point theorems for generalized weak contraction mapping in generating space of b-dislocated metric spaces
    Jain, Reena
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (07)
  • [7] On asymptotic pointwise nonexpansive mappings in modular function spaces
    Khamsi, M. A.
    Kozlowski, W. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 697 - 708
  • [8] FIXED-POINT THEORY IN MODULAR FUNCTION-SPACES
    KHAMSI, MA
    KOZLOWSKI, WM
    REICH, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (11) : 935 - 953
  • [9] Kozlowski W.M., 1988, Modular function spaces, Series of Monogrraphs and Texbooks, V122
  • [10] MUSIELAK J., 1959, Studia Math., V18, P49, DOI DOI 10.4064/SM-18-1-49-65