Numerical simulations of super rogue waves in a numerical wave tank

被引:5
作者
Hu, Zhe [1 ]
Zhang, Xiaoying [1 ]
Li, Yan [1 ]
Li, Xiaowen [1 ]
Qin, Hao [2 ]
机构
[1] Jimei Univ, Sch Marine Engn, Key Lab Ships & Ocean Engn Fujian Prov, Xiamen 361021, Peoples R China
[2] China Univ Geosci, Coll Marine Sci & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Super rogue waves; Numerical wave tank; Velocity field; Pressure field; Stokes waves; INSTABILITY; MECHANISMS; EQUATIONS; EVOLUTION; WATER; MODEL; SEA;
D O I
10.1016/j.oceaneng.2021.108929
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Following the experiments of Chabchoub et al. (2012b), super rogue waves up to the fifth order are simulated in a numerical wave tank under the framework of Navier-Stokes equations for the first time. The numerical wave tank solves 2D Navier-Stokes equations by using the Finite Difference Method and simulates free-surface flows by the Volume-of-Fluid method. The simulation results are verified against the theory of high-order rational solutions of the cubic Schrodinger equation. The features of localized velocity and pressure field are investigated by making comparison against those of standard 5-order Stokes waves. It is found that the flow field patterns of super rogue waves resemble those of equivalent Stokes waves while notable quantitative difference can be observed.
引用
收藏
页数:16
相关论文
共 44 条
  • [31] Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves
    Onorato, M
    Osborne, AR
    Serio, M
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [32] Rogue waves and their generating mechanisms in different physical contexts
    Onorato, M.
    Residori, S.
    Bortolozzo, U.
    Montina, A.
    Arecchi, F. T.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 528 (02): : 47 - 89
  • [33] PEREGRINE DH, 1983, J AUST MATH SOC B, V25, P16, DOI 10.1017/S0334270000003891
  • [34] What makes the Peregrine soliton so special as a prototype of freak waves?
    Shrira, Victor I.
    Geogjaev, Vladimir V.
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2010, 67 (1-2) : 11 - 22
  • [35] Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall, and collisions
    Slunyaev, A.
    Klein, M.
    Clauss, G. F.
    [J]. PHYSICS OF FLUIDS, 2017, 29 (04)
  • [36] Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations
    Slunyaev, A.
    Pelinovsky, E.
    Sergeeva, A.
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2013, 88 (01)
  • [37] Analysis of the Nonlinear Spectrum of Intense Sea Wave with the Purpose of Extreme Wave Prediction
    Slunyaev, A. V.
    [J]. RADIOPHYSICS AND QUANTUM ELECTRONICS, 2018, 61 (01) : 1 - 21
  • [38] Surface gravity waves from direct numerical simulations of the Euler equations: A comparison with second-order theory
    Toffoli, A.
    Onorato, M.
    Bitner-Gregersen, E.
    Osborne, A. R.
    Babanin, A. V.
    [J]. OCEAN ENGINEERING, 2008, 35 (3-4) : 367 - 379
  • [39] Extreme waves in random crossing seas: Laboratory experiments and numerical simulations
    Toffoli, A.
    Bitner-Gregersen, E. M.
    Osborne, A. R.
    Serio, M.
    Monbaliu, J.
    Onorato, M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [40] Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations
    Toffoli, A.
    Gramstad, O.
    Trulsen, K.
    Monbaliu, J.
    Bitner-Gregersen, E.
    Onorato, M.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 664 : 313 - 336