On the Kohn-Sham equations with periodic background potentials

被引:22
作者
Prodan, E [1 ]
Nordlander, P [1 ]
机构
[1] Rice Univ, Dept Phys, Houston, TX 77005 USA
关键词
density functional theory; Kohn-Sham equations; existence and uniqueness; thermodynamic limit; periodic potentials;
D O I
10.1023/A:1022810601639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the question of existence and uniqueness for the finite temperature Kohn-Sham equations. For finite volumes, a unique soluion is shown to exists if the effective potential satisfies a set of general conditions and the coupling constant is smaller than a certain value. For periodic background potentials, this value is proven to be volume independent. In this case, the finite volume solutions are shown to converge as the thermodynamic limit is considered. The local density approximation is shown to satisfy the general conditions mentioned above.
引用
收藏
页码:967 / 992
页数:26
相关论文
共 21 条
[1]   THERE ARE NO UNFILLED SHELLS IN UNRESTRICTED HARTREE-FOCK THEORY [J].
BACH, V ;
LIEB, EH ;
LOSS, M ;
SOLOVEJ, JP .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :2981-2983
[2]  
BOKANOWSKI ISO, 2000, NONLINEAR ANAL, V41, P33
[3]   On the thermodynamic limit for Hartree-Fock type models [J].
Catto, I ;
Le Bris, C ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (06) :687-760
[4]  
Catto I., 1998, MATH THEORY THERMODY
[5]  
Eschrig H., 1996, The Fundamentals of Density Functional Theory, DOI DOI 10.1007/978-3-322-97620-8
[6]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[7]   About a one-dimensional stationary Schrodinger-Poisson system with Kohn-Sham potential [J].
Kaiser, HC ;
Rehberg, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (03) :423-458
[8]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[9]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194
[10]  
LIEB EH, 1985, DENSITY FUNCTIONAL M, P31