Plurisubharmonic variation of the leafwise Poincare metric

被引:16
作者
Brunella, M [1 ]
机构
[1] CNRS UMR 5584, Lab Topol, Dijon, France
关键词
holomorphic foliations; uniformisation; holomorphic convexity;
D O I
10.1142/S0129167X03001697
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a higher dimensional generalization of the main result of our previous paper [2]: we shall prove that the Poincare metric on the leaves of a one-dimensional holomorphic foliation on a compact Kahler manifold has a plurisubharmonic variation.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 15 条
[1]  
Bogomolov F., 2001, RATIONAL CURVES FOLI
[2]  
BRUNELLA M, IN PRESS INVENT MATH
[3]  
Campana F, 2000, J ALGEBRAIC GEOM, V9, P223
[4]  
CAMPANA F, 1994, EMS, V74
[5]  
Chirka E.M., 1989, COMPLEX ANAL SETS
[6]  
Demailly J.-P., 1996, LECT NOTES MATH, V1646, P1
[7]   Pseudo-effective line bundles on compact Kahler manifolds [J].
Demailly, JP ;
Peternell, T ;
Schneider, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) :689-741
[8]   Structure of the moduli space in a neighborhood of a cusp-curve and meromorphic hulls [J].
Ivashkovich, S ;
Shevchishin, V .
INVENTIONES MATHEMATICAE, 1999, 136 (03) :571-602
[9]   THE HARTOGS-TYPE EXTENSION THEOREM FOR MEROMORPHIC MAPS INTO COMPACT KAHLER-MANIFOLDS [J].
IVASHKOVICH, SM .
INVENTIONES MATHEMATICAE, 1992, 109 (01) :47-54
[10]  
KOBAYASHI S, 1998, SPRINGER GRUNDLEHREN, V318