SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS

被引:28
作者
Cruz-Uribe, David [1 ]
Maria Martell, Jose
Perez, Carlos
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES | 2010年 / 17卷
基金
美国国家科学基金会;
关键词
A(p) weights; Haar shift operators singular integral operators; Hilbert transform; Riesz transforms; Beurling-Ahlfors operator; dyadic square function; vector-valued maximal operator; HILBERT TRANSFORM; INEQUALITIES; SPACES;
D O I
10.3934/era.2010.17.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the sharp weighted L-p inequality parallel to T parallel to(Lp(w)) <= C-n,C-T [w](Ap)(max(1,1/p-1)), where T is the Hilbert transform, a Riesz transform, the Beurling-Ahlfors operator or any operator that can be approximated by Haar shift operators. Our proof avoids the Bellman function technique and two weight norm inequalities. We use instead a recent result due to A. Lerner [15] to estimate the oscillation of dyadic operators. The method we use is flexible enough to obtain the sharp one-weight result for other important operators as well as a very sharp two-weight bump type result for T as can be found in [5].
引用
收藏
页码:12 / 19
页数:8
相关论文
共 20 条
[11]  
Grafakos L., 2008, GRADUATE TEXTS MATH, V249
[12]   WEIGHTED NORM INEQUALITIES FOR CONJUGATE FUNCTION AND HILBERT TRANSFORM [J].
HUNT, R ;
MUCKENHOUPT, B ;
WHEEDEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) :227-251
[13]   LOCAL SHARP MAXIMAL FUNCTIONS [J].
JAWERTH, B ;
TORCHINSKY, A .
JOURNAL OF APPROXIMATION THEORY, 1985, 43 (03) :231-270
[14]  
LACEY M, 2009, ARXIV09061941
[15]  
LERNER A, 2009, POINTWISE ESTIMATE L
[16]  
Nazarov F, 2008, MATH RES LETT, V15, P583
[17]   The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic [J].
Petermichl, S. .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (05) :1355-1375
[18]   Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol [J].
Petermichl, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06) :455-460
[19]  
Petermichl S, 2002, DUKE MATH J, V112, P281
[20]  
Petermichl S, 2008, P AM MATH SOC, V136, P1237