SHARP WEIGHTED ESTIMATES FOR APPROXIMATING DYADIC OPERATORS

被引:28
作者
Cruz-Uribe, David [1 ]
Maria Martell, Jose
Perez, Carlos
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES | 2010年 / 17卷
基金
美国国家科学基金会;
关键词
A(p) weights; Haar shift operators singular integral operators; Hilbert transform; Riesz transforms; Beurling-Ahlfors operator; dyadic square function; vector-valued maximal operator; HILBERT TRANSFORM; INEQUALITIES; SPACES;
D O I
10.3934/era.2010.17.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the sharp weighted L-p inequality parallel to T parallel to(Lp(w)) <= C-n,C-T [w](Ap)(max(1,1/p-1)), where T is the Hilbert transform, a Riesz transform, the Beurling-Ahlfors operator or any operator that can be approximated by Haar shift operators. Our proof avoids the Bellman function technique and two weight norm inequalities. We use instead a recent result due to A. Lerner [15] to estimate the oscillation of dyadic operators. The method we use is flexible enough to obtain the sharp one-weight result for other important operators as well as a very sharp two-weight bump type result for T as can be found in [5].
引用
收藏
页码:12 / 19
页数:8
相关论文
共 20 条
[1]   Beltrami operators in the plane [J].
Astala, K ;
Iwaniec, T ;
Saksman, E .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (01) :27-56
[2]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[3]   2 REMARKS ON H-1 AND BMO [J].
CARLESON, L .
ADVANCES IN MATHEMATICS, 1976, 22 (03) :269-277
[4]   Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture [J].
Cruz-Uribe, D. ;
Martell, J. M. ;
Perez, C. .
ADVANCES IN MATHEMATICS, 2007, 216 (02) :647-676
[5]  
CRUZURIBE D, 2010, ARXIV10014254
[6]   Extrapolation and sharp norm estimates for classical operators on weighted lebesgue spaces [J].
Dragicevic, O ;
Grafakos, L ;
Pereyra, C ;
Petermichl, S .
PUBLICACIONS MATEMATIQUES, 2005, 49 (01) :73-91
[7]  
Duoandikoetxea J., 2001, Graduate Studies in Mathematics., V29
[8]   A PROOF OF THE FEFFERMAN-STEIN-STROMBERG INEQUALITY FOR THE SHARP MAXIMAL FUNCTIONS [J].
FUJII, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (02) :371-377
[9]   A CONDITION FOR A 2-WEIGHT NORM INEQUALITY FOR SINGULAR INTEGRAL-OPERATORS [J].
FUJII, N .
STUDIA MATHEMATICA, 1991, 98 (03) :175-190
[10]   BMO FROM DYADIC BMO [J].
GARNETT, JB ;
JONES, PW .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 99 (02) :351-371