Overexpression of a Tartary Buckwheat Gene, FtbHLH3, Enhances Drought/Oxidative Stress Tolerance in Transgenic Arabidopsis

被引:60
|
作者
Yao, Pan-Feng [1 ]
Li, Cheng-Lei [1 ]
Zhao, Xue-Rong [1 ]
Li, Mao-Fei [1 ]
Zhao, Hai-Xia [1 ]
Guo, Jin-Ya [1 ]
Cai, Yi [1 ]
Chen, Hui [1 ]
Wu, Qi [1 ]
机构
[1] Sichuan Agr Univ, Coll Life Sci, Yaan, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2017年 / 8卷
关键词
tartary buckwheat; bHLH protein; drought stress; antioxidant system; chlorophyll fluorescence; transgenic A. thaliana; TRANSCRIPTION FACTOR; DROUGHT TOLERANCE; PONCIRUS-TRIFOLIATA; CONFERS DROUGHT; COLD TOLERANCE; EXPRESSION; DEHYDRATION; BHLH; SALT; BIOSYNTHESIS;
D O I
10.3389/fpls.2017.00625
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
bHLH (basic helix-loop-helix) transcription factors play important roles in the abiotic stress response in plants, but their characteristics and functions in tartary buckwheat (Fagopyrum tataricum), a flavonoid-rich cereal crop with a strong stress tolerance, have not been fully investigated. Here, a novel bHLH gene, designated FtbHLH3, was isolated and characterized. Expression analysis in tartary buckwheat revealed that FtbHLH3 was mainly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Subcellular localization and a yeast one-hybrid assay indicated that FtbHLH3 has transcriptional activation activities. Overexpression of FtbHLH3 in Arabidopsis resulted in increased drought/oxidative tolerance, which was attributed to not only lower malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS) but also higher proline (Pro) content, activities of antioxidant enzymes, and photosynthetic efficiency in transgenic lines compared to wild type (WT). Moreover, qRT-PCR analysis indicated that the expression of multiple stress-responsive genes in the transgenic lines was significantly higher than in WT under drought stress. In particular, the expression of AtNCED, a rate-limiting enzyme gene in ABA biosynthesis, was increased significantly under both normal and stress conditions. Additionally, an ABA-response-element (ABRE) was also found in the promoter regions. Furthermore, the transgenic Arabidopsis lines of the FtbHLH3 promoter had higher GUS activity after drought stress. In summary, our results indicated that FtbHLH3 may function as a positive regulator of drought/oxidative stress tolerance in transgenic Arabidopsis through an ABA-dependent pathway.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Overexpression of StDREB30 Gene Enhances Salt Stress Tolerance in Transgenic Potato
    Ul Ain-Ali, Qurat-
    Munir, Faiza
    Bhatti, Muhammad Faraz
    Amir, Rabia
    Gul, Alvina
    POTATO RESEARCH, 2024,
  • [22] Overexpression of the GmPM35 Gene Significantly Enhances Drought Tolerance in Transgenic Arabidopsis and Soybean
    Wang, Xinyu
    Sun, Yao
    Wang, Rui
    Li, Xinyang
    Li, Yongyi
    Wang, Tianyu
    Guo, Zhaohao
    Li, Yan
    Qiu, Wenxi
    Guan, Shuyan
    Zhang, Qi
    Wang, Piwu
    Li, Mingze
    Liu, Siyan
    Fan, Xuhong
    AGRONOMY-BASEL, 2025, 15 (01):
  • [23] Overexpression of a WRKY transcription factor McWRKY57-like from Mentha canadensis L. enhances drought tolerance in transgenic Arabidopsis
    Bai, Yang
    Zhang, Ting
    Zheng, Xiaowei
    Li, Bingxuan
    Qi, Xiwu
    Xu, Yu
    Li, Li
    Liang, Chengyuan
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [24] Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance
    Peng, Yunling
    Zhang, Jinpeng
    Cao, Gaoyi
    Xie, Yuanhong
    Liu, Xihui
    Lu, Minhui
    Wang, Guoying
    PLANT CELL REPORTS, 2010, 29 (07) : 793 - 802
  • [25] Cloning and overexpression of the DREB30 gene enhances drought and osmotic stress tolerance in transgenic potato
    Ul Ain-Ali, Qurat-
    Munir, Faiza
    Tahir, Muhammad
    Amir, Rabia
    Gul, Alvina
    JOURNAL OF PLANT INTERACTIONS, 2024, 19 (01)
  • [26] Overexpression of Potato PYL16 Gene in Tobacco Enhances the Transgenic Plant Tolerance to Drought Stress
    Yao, Panfeng
    Zhang, Chunli
    Bi, Zhenzhen
    Liu, Yuhui
    Liu, Zhen
    Wei, Jia
    Su, Xinglong
    Bai, Jiangping
    Cui, Junmei
    Sun, Chao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [27] Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses
    Pang, Xinyue
    Xue, Min
    Ren, Meiyan
    Nan, Dina
    Wu, Yaqi
    Guo, Huiqin
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 624 - 634
  • [28] Overexpression of StERECTA enhances drought tolerance in Arabidopsis thaliana
    Liu, Xuan
    Yang, Wenjing
    Zhang, Li
    Nie, Fengjie
    Gong, Lei
    Zhang, Hongxia
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 303
  • [29] A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants
    Chiappetta, Adriana
    Muto, Antonella
    Bruno, Leonardo
    Woloszynska, Magdalena
    Van Lijsebettens, Mieke
    Bitonti, Maria B.
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [30] Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis
    Yang, Liang
    Wu, Lintao
    Chang, Wei
    Li, Zhi
    Miao, Mingjun
    Li, Yuejian
    Yang, Junpin
    Liu, Zhibin
    Tan, Jun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 123 : 34 - 42