Overexpression of a Tartary Buckwheat Gene, FtbHLH3, Enhances Drought/Oxidative Stress Tolerance in Transgenic Arabidopsis

被引:60
|
作者
Yao, Pan-Feng [1 ]
Li, Cheng-Lei [1 ]
Zhao, Xue-Rong [1 ]
Li, Mao-Fei [1 ]
Zhao, Hai-Xia [1 ]
Guo, Jin-Ya [1 ]
Cai, Yi [1 ]
Chen, Hui [1 ]
Wu, Qi [1 ]
机构
[1] Sichuan Agr Univ, Coll Life Sci, Yaan, Peoples R China
来源
关键词
tartary buckwheat; bHLH protein; drought stress; antioxidant system; chlorophyll fluorescence; transgenic A. thaliana; TRANSCRIPTION FACTOR; DROUGHT TOLERANCE; PONCIRUS-TRIFOLIATA; CONFERS DROUGHT; COLD TOLERANCE; EXPRESSION; DEHYDRATION; BHLH; SALT; BIOSYNTHESIS;
D O I
10.3389/fpls.2017.00625
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
bHLH (basic helix-loop-helix) transcription factors play important roles in the abiotic stress response in plants, but their characteristics and functions in tartary buckwheat (Fagopyrum tataricum), a flavonoid-rich cereal crop with a strong stress tolerance, have not been fully investigated. Here, a novel bHLH gene, designated FtbHLH3, was isolated and characterized. Expression analysis in tartary buckwheat revealed that FtbHLH3 was mainly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Subcellular localization and a yeast one-hybrid assay indicated that FtbHLH3 has transcriptional activation activities. Overexpression of FtbHLH3 in Arabidopsis resulted in increased drought/oxidative tolerance, which was attributed to not only lower malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS) but also higher proline (Pro) content, activities of antioxidant enzymes, and photosynthetic efficiency in transgenic lines compared to wild type (WT). Moreover, qRT-PCR analysis indicated that the expression of multiple stress-responsive genes in the transgenic lines was significantly higher than in WT under drought stress. In particular, the expression of AtNCED, a rate-limiting enzyme gene in ABA biosynthesis, was increased significantly under both normal and stress conditions. Additionally, an ABA-response-element (ABRE) was also found in the promoter regions. Furthermore, the transgenic Arabidopsis lines of the FtbHLH3 promoter had higher GUS activity after drought stress. In summary, our results indicated that FtbHLH3 may function as a positive regulator of drought/oxidative stress tolerance in transgenic Arabidopsis through an ABA-dependent pathway.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Overexpression of Fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis
    Yao, Panfeng
    Sun, Zhaoxia
    Li, Chenglei
    Zhao, Xuerong
    Li, Maofei
    Deng, Renyu
    Huang, Yunji
    Zhao, Haixia
    Chen, Hui
    Wu, Qi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 125 : 85 - 94
  • [2] Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
    Gao, Fei
    Zhou, Jing
    Deng, Ren-Yu
    Zhao, Hai-Xia
    Li, Cheng-Lei
    Chen, Hui
    Suzuki, Tatsuro
    Park, Sang-Un
    Wu, Qi
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 214 : 81 - 90
  • [3] FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis
    Zhao, Jia-li
    Wu, Qiong
    Wu, Hua-la
    Wang, An-hu
    Wang, Xiao-li
    Li, Cheng-lei
    Zhao, Hai-xia
    Wu, Qi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 191 : 20 - 33
  • [4] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [5] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [6] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23
  • [7] Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis
    Young-Hwa Kim
    Gyung-Hye Huh
    In Vitro Cellular & Developmental Biology - Plant, 2019, 55 : 172 - 179
  • [8] Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis
    Kim, Young-Hwa
    Huh, Gyung-Hye
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2019, 55 (02) : 172 - 179
  • [9] Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants
    Chang-Tao Wang
    Yin-Mao Dong
    Biologia, 2009, 64 : 1108 - 1114
  • [10] Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress
    Chen, Yun
    Feng, Li
    Wei, Ning
    Liu, Zhi-Hao
    Hu, Shan
    Li, Xue-Bao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 115 : 229 - 238