An enhanced semi-explicit particle finite element method for incompressible flows

被引:1
|
作者
Marti, Julio [1 ,2 ]
Onate, Eugenio [1 ,2 ]
机构
[1] Ctr Int Metodes Numer Engn CIMNE, Gran Capitan S-N, Barcelona 08034, Spain
[2] Univ Politecn Catalunya UPC, Barcelona 08034, Spain
关键词
Incompressible Navier-Stokes; PFEM; Lagrangian; Strang splitting; FREE-SURFACES; SIMULATION; FORMULATION; FLUIDS; SOLVE; MODEL;
D O I
10.1007/s00466-022-02182-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper an enhanced version of the semi-explicit Particle Finite Element Method for incompressible flow problems is presented. This goal is achieved by improving the solution of the advective sub-problem that results of applying the Strang operator splitting to the Navier-Stokes equations. An acceleration term is taken into account in the solution of the advective step and the Stokes problem. The solution of the advetive step is perfomed using a SPH kernel. Two test cases are solved for validating the methodology and estimating its accuracy. The numerical results demonstrate that the proposed scheme improves the accuracy of the semi-explicit PFEM scheme.
引用
收藏
页码:607 / 620
页数:14
相关论文
共 50 条
  • [31] A second-order semi-Lagrangian particle finite element method for fluid flows
    Jonathan Colom-Cobb
    Julio Garcia-Espinosa
    Borja Servan-Camas
    P. Nadukandi
    Computational Particle Mechanics, 2020, 7 : 3 - 18
  • [32] A second-order semi-Lagrangian particle finite element method for fluid flows
    Colom-Cobb, Jonathan
    Garcia-Espinosa, Julio
    Servan-Camas, Borja
    Nadukandi, P.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) : 3 - 18
  • [33] A Two-Parameter Stabilized Finite Element Method for Incompressible Flows
    Shang, Yueqiang
    Qin, Jin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (02) : 425 - 444
  • [34] Stabilized Finite Element Method for Compressible-Incompressible Diphasic Flows
    Billaud, M.
    Gallice, G.
    Nkonga, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 171 - 179
  • [35] The CIP method embedded in finite element discretizations of incompressible fluid flows
    Banijamali, Bahareh
    Bathe, Klaus-Juergen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 71 (01) : 66 - 80
  • [36] Stabilized Finite Element Method for Compressible-Incompressible Interface Flows
    Billaud, Marie
    Gallice, Gerard
    Nkonga, Boniface
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1351 - +
  • [37] Simulations of incompressible fluid flows by a least squares finite element method
    Pereira, V.D.
    Campos Silva, J.B.
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2005, 27 (03) : 274 - 282
  • [38] Stabilized finite element method for incompressible flows with high Reynolds number
    Hachem, E.
    Rivaux, B.
    Kloczko, T.
    Digonnet, H.
    Coupez, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8643 - 8665
  • [39] A FINITE-ELEMENT METHOD FOR INCOMPRESSIBLE NON-NEWTONIAN FLOWS
    BERCOVIER, M
    ENGELMAN, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 36 (03) : 313 - 326
  • [40] Three-step finite element method for unsteady incompressible flows
    Jiang, Bo Chan
    Kawahara, Mutsuto
    Computational Mechanics, 1993, 11 (5-6) : 355 - 370