An enhanced semi-explicit particle finite element method for incompressible flows

被引:1
|
作者
Marti, Julio [1 ,2 ]
Onate, Eugenio [1 ,2 ]
机构
[1] Ctr Int Metodes Numer Engn CIMNE, Gran Capitan S-N, Barcelona 08034, Spain
[2] Univ Politecn Catalunya UPC, Barcelona 08034, Spain
关键词
Incompressible Navier-Stokes; PFEM; Lagrangian; Strang splitting; FREE-SURFACES; SIMULATION; FORMULATION; FLUIDS; SOLVE; MODEL;
D O I
10.1007/s00466-022-02182-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper an enhanced version of the semi-explicit Particle Finite Element Method for incompressible flow problems is presented. This goal is achieved by improving the solution of the advective sub-problem that results of applying the Strang operator splitting to the Navier-Stokes equations. An acceleration term is taken into account in the solution of the advective step and the Stokes problem. The solution of the advetive step is perfomed using a SPH kernel. Two test cases are solved for validating the methodology and estimating its accuracy. The numerical results demonstrate that the proposed scheme improves the accuracy of the semi-explicit PFEM scheme.
引用
收藏
页码:607 / 620
页数:14
相关论文
共 50 条
  • [21] Simple finite element method in vorticity formulation for incompressible flows
    Liu, JG
    Weinan, E
    MATHEMATICS OF COMPUTATION, 2001, 70 (234) : 579 - 593
  • [22] A finite element penalty-projection method for incompressible flows
    Jobelin, M.
    Lapuerta, C.
    Latche, J. -C.
    Angot, Ph.
    Piar, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) : 502 - 518
  • [23] A stabilised nonconforming finite element method for steady incompressible flows
    Huang, Pengzhan
    Feng, Xinlong
    Liu, Demin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (02) : 133 - 144
  • [24] A stabilized finite element method for generalized stationary incompressible flows
    Codina, R
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (20-21) : 2681 - 2706
  • [25] A coupled continuous and discontinuous finite element method for the incompressible flows
    Gao, Puyang
    Ouyang, Jie
    Dai, Pengfei
    Zhou, Wen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 84 (08) : 477 - 493
  • [26] Incompressible moving boundary flows with the finite volume particle method
    Nestor, Ruairi M.
    Quinlan, Nathan J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (33-36) : 2249 - 2260
  • [27] Coupling finite difference method with finite particle method for modeling viscous incompressible flows
    Huang, C.
    Long, T.
    Liu, M. B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 90 (11) : 564 - 583
  • [28] A semi-explicit method to simulate frictional impact problems
    Cros, Jean-Michel
    Feng, Zhi-Qiang
    Magnain, Benoit
    COMPTES RENDUS MECANIQUE, 2010, 338 (03): : 176 - 180
  • [29] Utilizing the explicit finite element method for studying granular flows
    Kabir, M. A.
    Lovell, Michael R.
    Higgs, C. Fred, III
    TRIBOLOGY LETTERS, 2008, 29 (02) : 85 - 94
  • [30] Utilizing the Explicit Finite Element Method for Studying Granular Flows
    M. A. Kabir
    Michael R. Lovell
    C. Fred Higgs
    Tribology Letters, 2008, 29 : 85 - 94