Graphene Nanoribbon Devices and Quantum Heterojunction Devices

被引:0
作者
Kim, Philip [1 ,2 ]
Han, Melinda Y. [2 ]
Young, Andrea F. [1 ]
Meric, Inane [3 ]
Shepard, Kenneth L. [3 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
来源
2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING | 2009年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We fabricate lithographically patterned graphene nanoribbon structures. The sizes of these energy gaps estimated from the conductance in the nonlinear response regime indicate that the gap is scaling inversely proportional to the width of the ribbons. The temperature dependent conductance measurements suggest the substantial amount of edge disorders in the graphene nanoribbons. We also fabricate the lateral graphene heterojunction devices employing the local top gate structures. Quantum conductance oscillations are observed in these devices.
引用
收藏
页码:220 / +
页数:2
相关论文
共 50 条
  • [41] Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model
    Chin, Sai-Kong
    Lam, Kai-Tak
    Seah, Dawei
    Liang, Gengchiau
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [42] Graphene nano-heterostructures for quantum devices
    Bischoff, D.
    Eich, M.
    Varlet, A.
    Simonet, P.
    Overweg, H. C.
    Ensslin, K.
    Ihn, T.
    MATERIALS TODAY, 2016, 19 (07) : 375 - 381
  • [43] Layered Graphene/Quantum Dots for Photovoltaic Devices
    Guo, Chun Xian
    Yang, Hong Bin
    Sheng, Zhao Min
    Lu, Zhi Song
    Song, Qun Liang
    Li, Chang Ming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (17) : 3014 - 3017
  • [44] Fabrication of quantum-dot devices in graphene
    Moriyama, Satoshi
    Morita, Yoshifumi
    Watanabe, Eiichiro
    Tsuya, Daiju
    Uji, Shinya
    Shimizu, Maki
    Ishibashi, Koji
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2010, 11 (05)
  • [45] Graphene and Quantum Dots Composite for Photovoltaic Devices
    Guo, Shirui
    Wang, Wei
    Guvenc, Ali Bilge
    Kyle, Jennifer Reiber
    Ozkan, Cengiz S.
    Ozkan, Mihrimah
    EMERGING MATERIALS AND PROCESSES FOR ENERGY CONVERSION AND STORAG E, 2013, 50 (40): : 41 - 52
  • [46] Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model
    Sai-Kong Chin
    Kai-Tak Lam
    Dawei Seah
    Gengchiau Liang
    Nanoscale Research Letters, 7
  • [47] Rectification in zigzag graphene/BN nanoribbon heterojunction
    Bian, Baoan
    Yang, Jingjuan
    Han, Xiaoxiao
    Yuan, Peipei
    Ding, Yuqiang
    MODERN PHYSICS LETTERS B, 2018, 32 (32):
  • [48] Quantum computation with graphene nanoribbon
    Guo, Guo-Ping
    Lin, Zhi-Rong
    Tu, Tao
    Cao, Gang
    Li, Xiao-Peng
    Guo, Guang-Can
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [49] Substrate Engineering-Tailored Fabrication of Aligned Graphene Nanoribbon Arrays: Implications for Graphene Electronic Devices
    Zhang, Tianfu
    Zhao, Jie
    Wang, Zhenlei
    Zhao, Yuxin
    Wu, Sanming
    Lai, Liwen
    Li, Mengjuan
    Jin, Yuanhao
    Wang, Jiaping
    Fan, Shoushan
    Li, Qunqing
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 13838 - 13847
  • [50] MATERIALS FOR HETEROJUNCTION DEVICES
    KRESSEL, H
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1980, 10 : 287 - 309