Graphene Nanoribbon Devices and Quantum Heterojunction Devices

被引:0
|
作者
Kim, Philip [1 ,2 ]
Han, Melinda Y. [2 ]
Young, Andrea F. [1 ]
Meric, Inane [3 ]
Shepard, Kenneth L. [3 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
来源
2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING | 2009年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We fabricate lithographically patterned graphene nanoribbon structures. The sizes of these energy gaps estimated from the conductance in the nonlinear response regime indicate that the gap is scaling inversely proportional to the width of the ribbons. The temperature dependent conductance measurements suggest the substantial amount of edge disorders in the graphene nanoribbons. We also fabricate the lateral graphene heterojunction devices employing the local top gate structures. Quantum conductance oscillations are observed in these devices.
引用
收藏
页码:220 / +
页数:2
相关论文
共 50 条
  • [21] Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes
    Ji, Xiao-Li
    Xie, Zhen
    Zuo, Xi
    Zhang, Guang-Ping
    Li, Zong-Liang
    Wang, Chuan-Kui
    PHYSICS LETTERS A, 2016, 380 (39) : 3198 - 3205
  • [22] Transforming Carbon Nanotube Devices into Nanoribbon Devices
    Zhang, Zengxing
    Sun, Zhengzong
    Yao, Jun
    Kosynkin, Dmitry V.
    Tour, James M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (37) : 13460 - 13463
  • [23] Transforming carbon nanotube devices into nanoribbon devices
    Zhang, Zengxing
    Sun, Zhengzong
    Yao, Jun
    Kosynkin, Dmitry V.
    Tour, James M.
    Journal of the American Chemical Society, 2009, 131 (37): : 13460 - 13463
  • [24] Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices
    Wang, Li
    Chen, Ran
    Ren, Zhi-Fei
    Ge, Cai-Wang
    Liu, Zhen-Xing
    He, Shu-Juan
    Yu, Yong-Qiang
    Wu, Chun-Yan
    Luo, Lin-Bao
    NANOTECHNOLOGY, 2016, 27 (21)
  • [25] Progress of Graphene-Silicon Heterojunction Photovoltaic Devices
    Huang, Kun
    Yu, Xuegong
    Cong, Jingkun
    Yang, Deren
    ADVANCED MATERIALS INTERFACES, 2018, 5 (24):
  • [26] Controllable spin-charge transport in strained graphene nanoribbon devices
    Diniz, Ginetom S., 1600, American Institute of Physics Inc. (116):
  • [27] Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters
    Magno, Macon
    Hagelberg, Frank
    JOURNAL OF MOLECULAR MODELING, 2018, 24 (01)
  • [28] Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters
    Macon Magno
    Frank Hagelberg
    Journal of Molecular Modeling, 2018, 24
  • [29] Elementary building blocks of graphene-nanoribbon-based electronic devices
    Xu, Zhiping
    Zheng, Quan-Shui
    Chen, Guanhua
    APPLIED PHYSICS LETTERS, 2007, 90 (22)
  • [30] Impact of Contact Configuration on Contact Resistance in Ultranarrow Graphene Nanoribbon Devices
    Poljak, Mirko
    Matic, Mislav
    Zeljko, Ante
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 5283 - 5288