Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

被引:1
作者
Zhang, H. Y. [1 ]
Zheng, G. P. [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
Metallic glasses; Nanowires; Shear banding; Phase-field modeling; Ductility; FRACTURE-TOUGHNESS; BULK; BEHAVIOR; COMPRESSION; STATE;
D O I
10.1016/j.jallcom.2013.12.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:S102 / S107
页数:6
相关论文
共 22 条
[1]   QUASI-STATIC CONSTITUTIVE BEHAVIOR OF ZR41.25TI13.75NI10CU12.5BE22.5 BULK AMORPHOUS-ALLOYS [J].
BRUCK, HA ;
CHRISTMAN, T ;
ROSAKIS, AJ ;
JOHNSON, WL .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 30 (04) :429-434
[2]   Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments [J].
Chen, C. Q. ;
Pei, Y. T. ;
De Hosson, J. T. M. .
ACTA MATERIALIA, 2010, 58 (01) :189-200
[3]   Fracture toughness determination for a beryllium-bearing bulk metallic glass [J].
Conner, RD ;
Rosakis, AJ ;
Johnson, WL ;
Owen, DM .
SCRIPTA MATERIALIA, 1997, 37 (09) :1373-1378
[4]   Molecular dynamics study of size effects in the compression of metallic glass nanowires [J].
Delogu, Francesco .
PHYSICAL REVIEW B, 2009, 79 (18)
[5]   Micropillar compression studies on a bulk metallic glass in different structural states [J].
Dubach, A. ;
Raghavan, R. ;
Loeffler, J. F. ;
Michler, J. ;
Ramamurty, U. .
SCRIPTA MATERIALIA, 2009, 60 (07) :567-570
[6]   Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass [J].
Gilbert, CJ ;
Schroeder, V ;
Ritchie, RO .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (07) :1739-1753
[7]   Tensile ductility and necking of metallic glass [J].
Guo, H. ;
Yan, P. F. ;
Wang, Y. B. ;
Tan, J. ;
Zhang, Z. F. ;
Sui, M. L. ;
Ma, E. .
NATURE MATERIALS, 2007, 6 (10) :735-739
[8]  
Jang DC, 2010, NAT MATER, V9, P215, DOI [10.1038/NMAT2622, 10.1038/nmat2622]
[9]   Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses [J].
Khonik, S. V. ;
Granato, A. V. ;
Joncich, D. M. ;
Pompe, A. ;
Khonik, V. A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[10]   Bulk and microscale compressive behavior of a Zr-based metallic glass [J].
Lai, Y. H. ;
Lee, C. J. ;
Cheng, Y. T. ;
Chou, H. S. ;
Chen, H. M. ;
Du, X. H. ;
Chang, C. I. ;
Huang, J. C. ;
Jian, S. R. ;
Jang, J. S. C. ;
Nieh, T. G. .
SCRIPTA MATERIALIA, 2008, 58 (10) :890-893