A deep learning model for classification of diabetic retinopathy in eye fundus images based on retinal lesion detection

被引:4
|
作者
delaPava, Melissa [1 ]
Rios, Hernan [2 ]
Rodriguez, Francisco J. [2 ]
Perdomo, Oscar J. [3 ]
Gonzalez, Fabio A. [1 ]
机构
[1] Univ Nacl Colombia, Bogota, Colombia
[2] Fdn Oftalmol Nacl, Bogota, Colombia
[3] Univ Rosario, Bogota, Colombia
关键词
retinal lesions; ocular screening; diabetic retinopathy; machine learning; DIAGNOSIS; SEVERITY; SYSTEM;
D O I
10.1117/12.2606319
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina. It can cause blindness, if left undiagnosed and untreated. An ophthalmologist performs the diagnosis by screening each patient and analyzing the retinal lesions via ocular imaging. In practice, such analysis is time-consuming and cumbersome to perform. This paper presents a model for automatic DR classification on eye fundus images. The approach identifies the main ocular lesions related to DR and subsequently diagnoses the illness. The proposed method follows the same workflow as the clinicians, providing information that can be interpreted clinically to support the prediction. A subset of the kaggle EyePACS and the Messidor-2 datasets, labeled with ocular lesions, is made publicly available. The kaggle EyePACS subset is used as training set and the Messidor-2 as a test set for lesions and DR classification models. For DR diagnosis, our model has an area-under-the-curve, sensitivity, and specificity of 0.948, 0.886, and 0.875, respectively, which competes with state-of-the-art approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep learning for classification of laterality of retinal fundus images
    Diaz, L.
    Vistisen, D.
    Jorgensen, M. Eika
    Valerius, M.
    Hajari, J. Nouri
    Andersen, H. L.
    Byberg, S.
    DIABETOLOGIA, 2020, 63 (SUPPL 1) : S394 - S394
  • [42] Lesion-Based Contrastive Learning for Diabetic Retinopathy Grading from Fundus Images
    Huang, Yijin
    Lin, Li
    Cheng, Pujin
    Lyu, Junyan
    Tang, Xiaoying
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 113 - 123
  • [43] Detection of Lesions and Classification of Diabetic Retinopathy Using Fundus Images
    Paing, May Phu
    Choomchuay, Somsak
    Yodprom, Rapeeporn
    2016 9TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2016,
  • [44] Detection of Diabetic Retinopathy and its Classification from the Fundus Images
    Shelar, Mayuresh
    Gaitonde, Sonali
    Senthilkumar, Amudha
    Mundra, Mradul
    Sarang, Anurag
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [45] Automatic Detection of Diabetic Retinopathy from Retinal Fundus Images Using MobileNet Model
    Das, Smita
    Mishra, Madhusudhan
    Majumder, Swanirbhar
    COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 1, ICCIS 2023, 2024, 967 : 303 - 313
  • [46] Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models
    Saranya, P.
    Pranati, R.
    Patro, Sneha Shruti
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 39327 - 39347
  • [47] Classification of Diabetic Retinopathy Severity Using Deep Learning Techniques on Retinal Images
    Kumari, A. Aruna
    Bhagat, Avinash
    Henge, Santosh Kumar
    CYBERNETICS AND SYSTEMS, 2024,
  • [48] Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy
    Narasimha-Iyer, Harihar
    Can, Ali
    Roysam, Badrinath
    Stewart, Charles V.
    Tanenbaum, Howard L.
    Majerovics, Anna
    Singh, Hanumant
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (06) : 1084 - 1098
  • [49] Internet of Things and Deep Learning Enabled Diabetic Retinopathy Diagnosis Using Retinal Fundus Images
    Palaniswamy, Thangam
    Vellingiri, Mahendiran
    IEEE ACCESS, 2023, 11 : 27590 - 27601
  • [50] Deep Learning Based Model for Fundus Retinal Image Classification
    Thanki, Rohit
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 238 - 249