TRANSVERSAL PERIODIC-TO-PERIODIC HOMOCLINIC ORBITS IN SINGULARLY PERTURBED SYSTEMS

被引:0
|
作者
Battelli, Flaviano [1 ]
Palmer, Ken [2 ]
机构
[1] Univ Ancona, Fac Ingn, Dipartimento Sci Matemat, I-60100 Ancona, Italy
[2] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2010年 / 14卷 / 02期
关键词
Singular perturbation; homoclinic bifurcation; invariant manifolds; Melnikov function; Sil'nikov orbits; CONNECTIONS; MANIFOLDS; POINTS;
D O I
10.3934/dcdsb.2010.14.367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed system with a normally hyperbolic centre manifold. Assuming the existence of a fast homoclinic orbit to a point of the centre manifold belonging to a hyperbolic periodic solution for the slow system, we prove an old and a new result concerning the existence of solutions of the singularly perturbed system that are homoclinic to a periodic solution of the system on the centre manifold. We also give examples in dimensions greater than three of Sil'nikov [16] periodic-to-periodic homoclinic orbits.
引用
收藏
页码:367 / 387
页数:21
相关论文
共 50 条