THE HERMITIAN CURVATURE FLOW ON MANIFOLDS WITH NON-NEGATIVE GRIFFITHS CURVATURE

被引:24
作者
Ustinovskiy, Yury [1 ]
机构
[1] Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
关键词
PROJECTIVE-MANIFOLDS; CLASSIFICATION;
D O I
10.1353/ajm.2019.0046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a particular version of the Hermitian curvature flow (HCF) over a compact complex Hermitian manifold (M, g, J). We prove that if the initial metric has Griffiths positive (non-negative) Chem curvature Omega, then this property is preserved along the flow. On a manifold with Griffiths non-negative Chern curvature the HCF has nice regularization properties, in particular, for any t > 0 the zero set of Omega(xi, (xi) over bar, eta, (eta) over bar) becomes invariant under certain torsion-twisted parallel transport.
引用
收藏
页码:1751 / 1775
页数:25
相关论文
共 22 条
[11]  
Gu HL, 2009, P AM MATH SOC, V137, P1063
[12]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
[13]  
Hartshorne R., 1966, I HAUTES TUDES SCI P, V29, P63, DOI [10.1007/BF02684806, DOI 10.1007/BF02684806]
[14]  
Kobayashi S., 1963, Foundations of differential geometry, Vvol 1
[15]   GEOMETRY OF HERMITIAN MANIFOLDS [J].
Liu, Ke-Feng ;
Yang, Xiao-Kui .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
[16]  
MOK N, 1988, J DIFFER GEOM, V27, P179
[17]   PROJECTIVE-MANIFOLDS WITH AMPLE TANGENT-BUNDLES [J].
MORI, S .
ANNALS OF MATHEMATICS, 1979, 110 (03) :593-606
[18]   Hermitian curvature flow [J].
Streets, Jeffrey ;
Tian, Gang .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :601-634
[19]  
Tosatti V, 2015, J DIFFER GEOM, V99, P125
[20]  
Ustinovskiy Y., PREPRINT