THE HERMITIAN CURVATURE FLOW ON MANIFOLDS WITH NON-NEGATIVE GRIFFITHS CURVATURE

被引:24
作者
Ustinovskiy, Yury [1 ]
机构
[1] Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
关键词
PROJECTIVE-MANIFOLDS; CLASSIFICATION;
D O I
10.1353/ajm.2019.0046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a particular version of the Hermitian curvature flow (HCF) over a compact complex Hermitian manifold (M, g, J). We prove that if the initial metric has Griffiths positive (non-negative) Chem curvature Omega, then this property is preserved along the flow. On a manifold with Griffiths non-negative Chern curvature the HCF has nice regularization properties, in particular, for any t > 0 the zero set of Omega(xi, (xi) over bar, eta, (eta) over bar) becomes invariant under certain torsion-twisted parallel transport.
引用
收藏
页码:1751 / 1775
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1969, INTERSCIENCE TRACTS
[2]  
BANDO S, 1984, J DIFFER GEOM, V19, P283
[3]  
Boucksom S, 2013, LECT NOTES MATH, V2086, P1, DOI 10.1007/978-3-319-00819-6
[4]   Classification of manifolds with weakly 1/4-pinched curvatures [J].
Brendle, Simon ;
Schoen, Richard M. .
ACTA MATHEMATICA, 2008, 200 (01) :1-13
[5]   PROJECTIVE-MANIFOLDS WHOSE TANGENT-BUNDLES ARE NUMERICALLY EFFECTIVE [J].
CAMPANA, F ;
PETERNELL, T .
MATHEMATISCHE ANNALEN, 1991, 289 (01) :169-187
[6]   ON HARNACK INEQUALITIES FOR THE KAHLER-RICCI FLOW [J].
CAO, HD .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :247-263
[7]  
Demailly J.P., Complex analytic and differential geometry
[8]  
DPS J-P., 1994, J. Algebraic Geom., V3, P295
[9]  
Gill M, 2011, COMMUN ANAL GEOM, V19, P277
[10]  
GRIFFITHS PA, 1965, J MATH MECH, V14, P117