RICCI SOLITONS ON 3-DIMENSIONAL COSYMPLECTIC MANIFOLDS

被引:51
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
美国国家科学基金会;
关键词
Ricci soliton; 3-dimensional cosymplectic manifold; contact transformation; locally flat; CONTACT GEOMETRY; INTEGRABILITY; TENSOR;
D O I
10.1515/ms-2017-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if a 3-dimensional cosymplectic manifold M-3 admits a Ricci soliton, then either M-3 is locally flat or the potential vector field is an infinitesimal contact transformation.
引用
收藏
页码:979 / 984
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2010, PROGR MATH
[2]   Einstein manifolds and contact geometry [J].
Boyer, CP ;
Galicki, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2419-2430
[3]   ALMOST CONTACT 3-MANIFOLDS AND RICCI SOLITONS [J].
Cho, Jong Taek .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (01)
[4]   CONTACT GEOMETRY AND RICCI SOLITONS [J].
Cho, Jong Taek ;
Sharma, Ramesh .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (06) :951-960
[5]   Contact metric manifolds with η-parallel torsion tensor [J].
Ghosh, Amalendu ;
Sharma, Ramesh ;
Cho, Jong Taek .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (03) :287-299
[6]   Kenmotsu 3-metric as a Ricci soliton [J].
Ghosh, Amalendu .
CHAOS SOLITONS & FRACTALS, 2011, 44 (08) :647-650
[7]  
GOLDBERG SI, 1969, P AM MATH SOC, V21, P96
[8]   INTEGRABILITY OF ALMOST COSYMPLECTIC STRUCTURES [J].
GOLDBERG, SI ;
YANO, K .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) :373-&
[9]  
HAMILTON R. S., 1988, AM MATH SOC, V71
[10]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255