Human action recognition based on spatial-temporal relational model and LSTM-CNN framework

被引:7
|
作者
Senthilkumar, N. [1 ]
Manimegalai, M. [2 ]
Karpakam, S. [3 ]
Ashokkumar, S. R. [3 ]
Premkumar, M. [4 ]
机构
[1] Dr NGP Inst Technol, Dept ECE, Coimbatore, Tamil Nadu, India
[2] Mahendra Engn Coll Women, Dept ECE, Namakkal, India
[3] Sri Eshwar Coll Engn, Dept ECE, Coimbatore, Tamil Nadu, India
[4] SSM Inst Engn & Technol, Dept ECE, Dindigul, India
关键词
Action recognition; Dilated bi-directional LSTM; CNN;
D O I
10.1016/j.matpr.2021.12.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to the increasing popularity of human skeleton capture systems, many new methods for implementing skeleton-based action recognition has been proposed. Some of these include Long Term Memory and Convolutional Neural Networks. These methods can investigate the significant spatial-temporal information, but they are limited in their capacity to do so in real-world scenarios. In this paper, a new spatialtemporal model with a bi-temporal end-to-end framework is proposed. A novel structure is proposed to combine the functions LSTM and CNN. The structure uses the dependency model to build the skeleton data for the proposed network. Copyright (C) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Innovation and Application in Science and Technology
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [31] Multi-Branch Spatial-Temporal Network for Action Recognition
    Wang, Yingying
    Li, Wei
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (10) : 1556 - 1560
  • [32] Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos
    Du, Wenbin
    Wang, Yali
    Qiao, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1347 - 1360
  • [33] STSD: spatial-temporal semantic decomposition transformer for skeleton-based action recognition
    Cui, Hu
    Hayama, Tessai
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [34] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [35] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [36] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188
  • [37] Spatial-temporal interaction learning based two-stream network for action recognition
    Liu, Tianyu
    Ma, Yujun
    Yang, Wenhan
    Ji, Wanting
    Wang, Ruili
    Jiang, Ping
    INFORMATION SCIENCES, 2022, 606 : 864 - 876
  • [38] Human action recognition via multi-task learning base on spatial-temporal feature
    Guo, Wenzhong
    Chen, Guolong
    INFORMATION SCIENCES, 2015, 320 : 418 - 428
  • [39] Spatial-Temporal Bottom-Up Top-Down Attention Model for Action Recognition
    Wang, Jinpeng
    Ma, Andy J.
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 81 - 92
  • [40] ACTION RECOGNITION WITH SPATIAL-TEMPORAL REPRESENTATION ANALYSIS ACROSS GRASSMANNIAN MANIFOLD AND EUCLIDEAN SPACE
    Qiao, Xinshu
    Zhou, Chuanwei
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3448 - 3452