Human action recognition based on spatial-temporal relational model and LSTM-CNN framework

被引:7
|
作者
Senthilkumar, N. [1 ]
Manimegalai, M. [2 ]
Karpakam, S. [3 ]
Ashokkumar, S. R. [3 ]
Premkumar, M. [4 ]
机构
[1] Dr NGP Inst Technol, Dept ECE, Coimbatore, Tamil Nadu, India
[2] Mahendra Engn Coll Women, Dept ECE, Namakkal, India
[3] Sri Eshwar Coll Engn, Dept ECE, Coimbatore, Tamil Nadu, India
[4] SSM Inst Engn & Technol, Dept ECE, Dindigul, India
关键词
Action recognition; Dilated bi-directional LSTM; CNN;
D O I
10.1016/j.matpr.2021.12.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to the increasing popularity of human skeleton capture systems, many new methods for implementing skeleton-based action recognition has been proposed. Some of these include Long Term Memory and Convolutional Neural Networks. These methods can investigate the significant spatial-temporal information, but they are limited in their capacity to do so in real-world scenarios. In this paper, a new spatialtemporal model with a bi-temporal end-to-end framework is proposed. A novel structure is proposed to combine the functions LSTM and CNN. The structure uses the dependency model to build the skeleton data for the proposed network. Copyright (C) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Innovation and Application in Science and Technology
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [21] An Attention Enhanced Spatial-Temporal Graph Convolutional LSTM Network for Action Recognition in Karate
    Guo, Jianping
    Liu, Hong
    Li, Xi
    Xu, Dahong
    Zhang, Yihan
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [22] Action Recognition Based on Spatial-Temporal Pyramid Sparse Coding
    Zhang, Xiaojing
    Zhang, Hua
    Cao, Xiaochun
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1455 - 1458
  • [23] A SPATIAL-TEMPORAL CONSTRAINT-BASED ACTION RECOGNITION METHOD
    Han, Tingting
    Yao, Hongxun
    Zhang, Yanhao
    Xu, Pengfei
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2767 - 2771
  • [24] Human action recognition based on multi-mode spatial-temporal feature fusion
    Wang, Dongli
    Yang, Jun
    Zhou, Yan
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [25] Automatic artifact recognition and correction for electrodermal activity based on LSTM-CNN models
    Llanes-Jurado, Jose
    Carrasco-Ribelles, Lucia A.
    Alcaniz, Mariano
    Soria-Olivas, Emilio
    Marin-Morales, Javier
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [26] In-process Tool Wear Monitoring Model Based on LSTM-CNN
    He Y.
    Ling J.
    Wang Y.
    Li Y.
    Wu P.
    Xiao Z.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2020, 31 (16): : 1959 - 1967
  • [27] Joint spatial-temporal attention for action recognition
    Yu, Tingzhao
    Guo, Chaoxu
    Wang, Lingfeng
    Gu, Huxiang
    Xiang, Shiming
    Pan, Chunhong
    PATTERN RECOGNITION LETTERS, 2018, 112 : 226 - 233
  • [28] Spatial-Temporal Neural Networks for Action Recognition
    Jing, Chao
    Wei, Ping
    Sun, Hongbin
    Zheng, Nanning
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 519 : 619 - 627
  • [29] Spatial-temporal pooling for action recognition in videos
    Wang, Jiaming
    Shao, Zhenfeng
    Huang, Xiao
    Lu, Tao
    Zhang, Ruiqian
    Lv, Xianwei
    NEUROCOMPUTING, 2021, 451 : 265 - 278
  • [30] Spatial-temporal interaction module for action recognition
    Luo, Hui-Lan
    Chen, Han
    Cheung, Yiu-Ming
    Yu, Yawei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)