VIBRATION CHARACTERISTICS OF FLUID-STRUCTURE INTERACTION OF CONICAL SPIRAL TUBE BUNDLE

被引:17
|
作者
Yan Ke [1 ]
Ge Pei-qi [1 ]
Bi Wen-bo [1 ]
Su Yan-cai [1 ]
Hu Rui-rong [1 ]
机构
[1] Shandong Univ, Sch Mech Engn, Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
关键词
conical spiral tube; heat exchanger; finite element method; fluid-structure interaction; vibration characteristics; HEAT-TRANSFER CHARACTERISTICS; PIPES CONVEYING FLUID; NUMERICAL-SIMULATION; FLOW; DYNAMICS;
D O I
10.1016/S1001-6058(09)60036-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Heat transfer enhancement is achieved by flow-induced vibration in elastic tube bundles heat exchangers. For a further understanding of heat transfer enhancement mechanism and tube structure optimization, it is of importance to study the vibration characteristics of fluid-structure interaction of tube bundles. The finite element method is applied in the study of fluid-structure interaction of a new type elastic heat transfer element, i.e., the dimensional conical spiral tube bundle. The vibration equation and element matrix for the tube are set up by the regulation of different helical angles and coordinate transformation, together with the simplification of the joint body of the two pipes. The vibration characteristics of conical spiral tube bundle are analyzed at different velocities of the tube-side flow, and the critical velocity of vibration buckling is obtained. The results show that the natural frequency of the tube bundle decreases as the flow speed increases, especially for the first order frequency, and the critical velocity of vibration buckling is between 1.2665 m/s-1.2669 m/s. The vibration mode of conical spiral tube bundle is mainly z-axial, which is feasible to be induced and controlled.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 50 条
  • [41] Fluid-structure interaction analysis on flow field and vibration characteristics of gas proportional valve
    Liu, Fengguo
    Wan, Zhiyuan
    Cao, Shihua
    Zhao, Dongfang
    Liu, Guangqian
    Zhang, Keke
    FLOW MEASUREMENT AND INSTRUMENTATION, 2025, 101
  • [42] Analysis on a multiple-impeller considering the fluid-structure interaction and its vibration characteristics
    Hu, Xiaodong
    Wang, Hao
    Wang, Shifei
    Zhang, Jingpo
    Zeng, Qingliang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2017, 36 (14): : 133 - 137
  • [43] Numerical simulation of fluid-structure interaction in the opening process of conical parachute
    Cao, Y.
    Wu, Z.
    Song, Q.
    Sheridan, J.
    AERONAUTICAL JOURNAL, 2009, 113 (1141): : 191 - 200
  • [45] Heat transfer and resistance characteristics of conical spiral tube bundle based on field synergy principle
    Ke Yan
    Peiqi Ge
    Ruirong Hu
    Haitao Meng
    Chinese Journal of Mechanical Engineering, 2012, 25 : 370 - 376
  • [46] Heat Transfer and Resistance Characteristics of Conical Spiral Tube Bundle Based on Field Synergy Principle
    Yan Ke
    Ge Peiqi
    Hu Ruirong
    Meng Haitao
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2012, 25 (02) : 370 - 376
  • [47] FLUID-STRUCTURE INTERACTION Fluid-Structure Interaction Issues in Aeronautical Engineering
    Jo, Jong Chull
    Giannopapa, Christina
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 4, 2012, : 421 - 421
  • [48] Fluid-structure interaction vibration and dynamic response of composite stiffened structure
    Xiang, Chen
    Chen, Haoran
    Guo, Zhaopu
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 1996, 13 (03): : 100 - 104
  • [49] An integrated approach to modelling the fluid-structure interaction of a collapsible tube
    Scroggs, RA
    Beck, SBM
    Patterson, EA
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2004, 47 (01) : 20 - 28
  • [50] Partitioned vibration analysis of internal fluid-structure interaction problems
    Gonzalez, Jose A.
    Park, K. C.
    Lee, I.
    Felippa, C. A.
    Ohayon, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (03) : 268 - 300