Free-Standing rGO-CNT Nanocomposites with Excellent Rate Capability and Cycling Stability for Na2SO4 Aqueous Electrolyte Supercapacitors

被引:24
作者
Du, Xiaohan [1 ]
Qin, Zhen [1 ]
Li, Zijiong [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Phys & Elect Engn, Zhengzhou 450045, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Phys & Elect Engn, Zhengzhou 450002, Peoples R China
关键词
rGO-CNT nanocomposite; synergistic enhancement effect; excellent electrochemical properties; supercapacitors; GRAPHENE OXIDE; CARBON NANOTUBE; ENERGY-STORAGE; PERFORMANCE; COMPOSITES; NANOMATERIALS; CAPACITANCE; FABRICATION; AEROGELS; NETWORKS;
D O I
10.3390/nano11061420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Facing the increasing demand for various renewable energy storage devices and wearable and portable energy storage systems, the research on electrode materials with low costs and high energy densities has attracted great attention. Herein, free-standing rGO-CNT nanocomposites have been successfully synthesized by a facile hydrothermal method, in which the hierarchical porous network nanostructure is synergistically assembled by rGO nanosheets and CNT with interlaced network distribution. The rGO-CNT composite electrodes with synergistic enhancement of rGO and CNT exhibit high specific capacitance, excellent rate capability, exceptional conductivity and outstanding long-term cycling stability, especially for the optimal rGO-CNT30 electrode. Applied to a symmetric supercapacitor systems (SSS) assembled with an rGO-CNT30 electrode and with 1 M Na2SO4 aqueous solution as the electrolyte, the SSS possesses a high energy density of 12.29 W h kg(-1) and an outstanding cycling stability, with 91.42% of initial specific capacitance after 18,000 cycles. Results from these electrochemical properties suggest that the rGO-CNT30 nanocomposite electrode is a promising candidate for the development of flexible and lightweight high-performance supercapacitors.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing [J].
Ammar, M. R. ;
Galy, N. ;
Rouzaud, J. N. ;
Toulhoat, N. ;
Vaudey, C. E. ;
Simon, P. ;
Moncoffre, N. .
CARBON, 2015, 95 :364-373
[2]   Novel three-dimensional island-chain structured V2O5/graphene/MWCNT hybrid aerogels for supercapacitors with ultralong cycle life [J].
Bi, Wenchao ;
Gao, Guohua ;
Wu, Yingjie ;
Yang, Huiyu ;
Wang, Jichao ;
Zhang, Yuerou ;
Liang, Xing ;
Liu, Yindan ;
Wu, Guangming .
RSC ADVANCES, 2017, 7 (12) :7179-7187
[3]   In situ MoS2 Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes [J].
Clerici, Francesca ;
Fontana, Marco ;
Bianco, Stefano ;
Serrapede, Mara ;
Perrucci, Francesco ;
Ferrero, Sergio ;
Tresso, Elena ;
Lamberti, Andrea .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (16) :10459-10465
[4]   Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor [J].
Couly, Cedric ;
Alhabeb, Mohamed ;
Van Aken, Katherine L. ;
Kurra, Narendra ;
Gomes, Luisa ;
Navarro-Suarez, Adriana M. ;
Anasori, Babak ;
Alshareef, Husam N. ;
Gogotsi, Yury .
ADVANCED ELECTRONIC MATERIALS, 2018, 4 (01)
[5]   Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitors [J].
Ding, Bing ;
Guo, Dong ;
Wang, Yahui ;
Wu, Xiaoliang ;
Fan, Zhuangjun .
JOURNAL OF POWER SOURCES, 2018, 398 :113-119
[6]   Fabrication of Graphene Oxide Supercapacitor Devices [J].
Down, Michael P. ;
Rowley-Neale, Samuel J. ;
Smith, Graham C. ;
Banks, Craig E. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (02) :707-714
[7]   Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors [J].
Duy Tho Pham ;
Lee, Tae Hoon ;
Luong, Dinh Hoa ;
Yao, Fei ;
Ghosh, Arunabha ;
Viet Thong Le ;
Kim, Tae Hyung ;
Li, Bing ;
Chang, Jian ;
Lee, Young Hee .
ACS NANO, 2015, 9 (02) :2018-2027
[8]   3D conductive network-based free-standing PANI-RGO-MWNTs hybrid film for high-performance flexible supercapacitor [J].
Fan, Haosen ;
Zhao, Ning ;
Wang, Hao ;
Xu, Jian ;
Pan, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12340-12347
[9]   Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Lim, Sinmuk ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10253-10259
[10]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423