Evaluating the Robustness of Metal-Organic Frameworks for Synthetic Chemistry

被引:45
作者
Wang, Zihao [1 ]
Bilegsaikhan, Arvin [1 ]
Jerozal, Ronald T. [1 ]
Pitt, Tristan A. [1 ]
Milner, Phillip J. [1 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14850 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
metal-organic frameworks; catalysis; stability; robustness; HYDROGEN STORAGE; STABILITY; CAPTURE; WATER; ADSORPTION; SEPARATION; OXIDATION; UIO-66; GAS; CO2;
D O I
10.1021/acsami.1c01329
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-organic frameworks (MOFs) are emerging as sustainable reagents and catalysts with promising applications in synthetic chemistry. Although the hydrothermal stabilities of MOFs have been well studied, their robustness toward various reagents, including acids, bases, nucleophiles, electrophiles, oxidants, and reductants, remains poorly characterized. As such, heterogeneous platforms for promising catalysts are generally identified on an ad hoc basis and have largely been limited to carboxylate frameworks to date. To address these limitations, here we systematically characterize the robustness of 17 representative carboxylate, salicylate, and azolate MOFs toward 30 conditions representing the scope of synthetic organic chemistry. Specifically, analysis of the full width at half-maximum of powder X-ray diffraction patterns, as well as infrared spectroscopy, 77 K N-2 adsorption measurements, and scanning electron microscopy in select cases are employed to appraise framework degradation and dissolution under a range of representative conditions. Our studies demonstrate that azolate MOFs, such as Fe-2(bdp)(3) (bdp(2-) = 4,4'-(1,4-phenylene)bis(pyrazolate)), generally possess excellent chemical stabilities under myriad conditions. In addition, we find that carboxylate and salicylate frameworks possess complementary stabilities, with carboxylate MOFs possessing superior robustness toward acids, electrophiles, and oxidants, and salicylate MOFs demonstrating improved robustness toward bases, nucleophiles, and reductants. The guidelines provided herein should facilitate the rational design of robust frameworks for applications in synthetic chemistry and guide the development of new strategies for the postsynthetic modification of MOFs as well.
引用
收藏
页码:17517 / 17531
页数:15
相关论文
共 70 条
[1]   Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide [J].
Allan, Phoebe K. ;
Wheatley, Paul S. ;
Aldous, David ;
Mohideen, M. Infas ;
Tang, Chiu ;
Hriljac, Joseph A. ;
Megson, Ian L. ;
Chapman, Karena W. ;
De Weireld, Guy ;
Vaesen, Sebastian ;
Morris, Russell E. .
DALTON TRANSACTIONS, 2012, 41 (14) :4060-4066
[2]  
[Anonymous], 2018, RSC ADV
[3]   A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework [J].
Aubrey, Michael L. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (42) :13594-13602
[4]   Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives [J].
Bavykina, Anastasiya ;
Kolobov, Nikita ;
Khan, Il Son ;
Bau, Jeremy A. ;
Ramirez, Adrian ;
Gascon, Jorge .
CHEMICAL REVIEWS, 2020, 120 (16) :8468-8535
[5]   Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: Effect of temperature and pH [J].
Bezverkhyy, Igor ;
Weber, Guy ;
Bellat, Jean-Pierre .
MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 219 :117-124
[6]   Hydrogen Storage and Selective, Reversible O2 Adsorption in a Metal-Organic Framework with Open Chromium(II) Sites [J].
Bloch, Eric D. ;
Queen, Wendy L. ;
Hudson, Matthew R. ;
Mason, Jarad A. ;
Xiao, Dianne J. ;
Murray, Leslie J. ;
Flacau, Roxana ;
Brown, Craig M. ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (30) :8605-8609
[7]   Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation [J].
Buzek, Daniel ;
Demel, Jan ;
Lang, Kamil .
INORGANIC CHEMISTRY, 2018, 57 (22) :14290-14297
[8]   Redox-active metal-organic frameworks for energy conversion and storage [J].
Calbo, Joaquin ;
Golomb, Matthias J. ;
Walsh, Aron .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16571-16597
[9]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[10]   Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J].
Chen, Binling ;
Yang, Zhuxian ;
Zhu, Yanqiu ;
Xia, Yongde .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :16811-16831