A Whitehead algorithm for surface groups

被引:5
作者
Levitt, G [1 ]
Vogtmann, K
机构
[1] Univ Toulouse 3, Lab Emile Picard, CNRS, UMR 5580, F-31062 Toulouse 4, France
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Whitehead algorithm; surface group; automorphism; diffeomorphism;
D O I
10.1016/S0040-9383(99)00027-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For G the fundamental group of a closed surface, we produce an algorithm which decides whether there is an element of the automorphism group of G which takes one specified finite set of elements to another. The algorithm finds such an automorphism if it exists. The methods are geometric and also apply to surfaces with boundary. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1239 / 1251
页数:13
相关论文
共 12 条
  • [1] [Anonymous], 1980, LECT NOTES MATH
  • [2] Colley A., 1984, Leisure Studies, V3, P335, DOI 10.1080/02614368400390271
  • [3] RESCUING THE WHITEHEAD METHOD FOR FREE-PRODUCTS .1. PEAK REDUCTION
    COLLINS, DJ
    ZIESCHANG, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (04) : 487 - 504
  • [4] COORNAERT M, 1990, LECT NOTES MATH, V1441
  • [5] Distinguished subgroups and quotients of hyperbolic groups
    Delzant, T
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) : 661 - 682
  • [6] Fathi A., 1979, ASTERISQUE, P66
  • [7] Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]
  • [8] SHORTENING CURVES ON SURFACES
    HASS, J
    SCOTT, P
    [J]. TOPOLOGY, 1994, 33 (01) : 25 - 43
  • [9] HIGGINS PJ, 1974, J LOND MATH SOC, V8, P254
  • [10] SUBGROUPS OF SURFACE GROUPS ARE ALMOST GEOMETRIC
    SCOTT, P
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (JUN): : 555 - 565