Finite element methods for surface PDEs

被引:444
作者
Dziuk, Gerhard [1 ]
Elliott, Charles M. [2 ]
机构
[1] Univ Freiburg Breisgau, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; GENERIC GRID INTERFACE; CAHN-HILLIARD EQUATION; ELLIPTIC-EQUATIONS; NUMERICAL COMPUTATION; DIFFUSION EQUATION; PHASE-SEPARATION; VOLUME METHOD; SOLVING PDES; APPROXIMATION;
D O I
10.1017/S0962492913000056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples.
引用
收藏
页码:289 / 396
页数:108
相关论文
共 100 条
[1]   Transport and diffusion of material quantities on propagating interfaces via level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (01) :271-288
[2]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[3]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[4]   The surface finite element method for pattern formation on evolving biological surfaces [J].
Barreira, R. ;
Elliott, C. M. ;
Madzvamuse, A. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (06) :1095-1119
[5]  
Barreira R, 2009, THESIS U SUSSEX
[6]  
Barrett J. W., 1982, NUMERICAL METHODS FL, P389
[7]   On the parametric finite element approximation of evolving hypersurfaces in R3 [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4281-4307
[8]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[9]   PARAMETRIC APPROXIMATION OF WILLMORE FLOW AND RELATED GEOMETRIC EVOLUTION EQUATIONS [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :225-253
[10]   FINITE-ELEMENT APPROXIMATION OF ELLIPTIC-EQUATIONS WITH A NEUMANN OR ROBIN CONDITION ON A CURVED BOUNDARY [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (03) :321-342