Tunneling influence on the intersubband optical absorption coefficient and refraction index in biased GaAs/AlGaAs quantum well wires

被引:8
作者
Aqiqi, S. [1 ]
Duque, C. A. [2 ]
Radu, A. [3 ]
Vinasco, J. A. [4 ]
Laroze, D. [4 ]
机构
[1] Mohammed V Univ Rabat, Lab Mat Condensee & Sci Interdisciplinaires LaMCS, Rabat, Morocco
[2] Univ Antioquia UdeA, Grp Mat Condensada UdeA, Inst Fis, Fac Ciencias Exactas & Nat, Calle 70 52-21, Medellin, Colombia
[3] Univ Politehn Bucuresti, Dept Phys, 313 Splaiul Independentei, RO-060042 Bucharest, Romania
[4] Univ Tarapaca, Inst Alta Invest, CEDENNA, Casilla 7D, Arica, Chile
关键词
Semiconductor; Quantum well wire; Electric field; Intersubband transition; Tunnel effect; Absorption coefficient; Refraction index; CONDUCTION-BAND; GAAS; EXCITON; STATES; PHOTOLUMINESCENCE; TRANSITIONS; FABRICATION; GROWTH; INAS;
D O I
10.1016/j.physe.2021.114763
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the tunnel effect influence on the intersubband optical absorption and refraction in a gallium arsenide quantum well wire in transverse electric field. The quasi-stationary energy levels and escape times are obtained using the complex eigenvalue study in a two-dimensional finite element method. The linear absorption coefficient and the relative change of the refractive index are calculated according to the Fermi?s golden rule and by involving the intersubband relaxation time. Our work shows that the electronic linewidth broadening related to the carrier tunneling has a major effect on the optical absorption lines, especially for intense electric fields. Absorption peaks are blue-shifted by the increasing electric field and, at the same time, they are enlarged and decreased in amplitude. A field-invariable relaxation rate, as is assumed by many previous theoretical studies, could not be justified, even for moderate electric fields.
引用
收藏
页数:13
相关论文
共 59 条
[1]   INTERSUBBAND OPTICAL-ABSORPTION IN A QUANTUM-WELL WITH AN APPLIED ELECTRIC-FIELD [J].
AHN, D ;
CHUANG, SL .
PHYSICAL REVIEW B, 1987, 35 (08) :4149-4151
[2]  
AHN D, 1987, IEEE J QUANTUM ELECT, V23, P2196
[3]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[4]  
[Anonymous], 2010, Semiconductor Nanostructures: Quantum States and Electronic Transport
[5]   Photoluminescence studies of GaAs quantum wires with quantum confined Stark effect [J].
Arakawa, T ;
Kato, Y ;
Sogawa, F ;
Arakawa, Y .
APPLIED PHYSICS LETTERS, 1997, 70 (05) :646-648
[6]   FABRICATION AND OPTICAL-PROPERTIES OF GAAS QUANTUM WIRES AND DOTS BY MOCVD SELECTIVE GROWTH [J].
ARAKAWA, Y ;
NAGAMUNE, Y ;
NISHIOKA, M ;
TSUKAMOTO, S .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (06) :1082-1088
[7]   Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization [J].
Badada, Bekele H. ;
Shi, Teng ;
Jackson, Howard E. ;
Smith, Leigh M. ;
Zheng, Changlin ;
Etheridge, Joanne ;
Gao, Qiang ;
Tan, H. Hoe ;
Jagadish, Chennupati .
NANO LETTERS, 2015, 15 (12) :7847-7852
[8]  
Balandin A.A., 2006, Handbook of Semiconductor Nanostructures and Neno Devices
[9]  
Bloembergen N., 1965, NONLINEAR OPTICS
[10]   Intersubband optical absorption in InAs/In0.52 Al0.48As quantum wire in the presence of tilted electric field [J].
Bouazra, A. ;
Abdi-Ben Nasrallah, S. ;
Said, M. .
OPTIK, 2017, 147 :328-333