Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations

被引:22
作者
Callewaert, Bram [1 ,2 ]
Jones, Elizabeth A. V. [2 ,3 ]
Himmelreich, Uwe [1 ]
Gsell, Willy [1 ]
机构
[1] Univ Leuven, Biomed MRI Grp, Herestr 49,Bus 505, B-3000 Leuven, Belgium
[2] Univ Leuven, Ctr Mol & Vasc Biol, CMVB, Herestr 49,Bus 911, B-3000 Leuven, Belgium
[3] Maastricht Univ, CARIM, Univ Singel 50, NL-6200 MD Maastricht, Netherlands
关键词
microvasculature; brain; MRI; rodent; neurodegenerative disorders; perfusion; ARTERIAL INPUT FUNCTION; VASCULAR-SPACE-OCCUPANCY; BLOOD-BRAIN-BARRIER; CONTRAST-ENHANCED MRI; DCE-MRI; COGNITIVE IMPAIRMENT; PERFUSION MRI; RAT-BRAIN; PHARMACOKINETIC ANALYSIS; POTENTIAL IMPLICATIONS;
D O I
10.3390/diagnostics11060926
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
引用
收藏
页数:31
相关论文
共 227 条
[1]   Overview and Critical Appraisal of Arterial Spin Labelling Technique in Brain Perfusion Imaging [J].
Alsaedi, Amirah ;
Thomas, David ;
Bisdas, Sotirios ;
Golay, Xavier .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[2]   Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia [J].
Alsop, David C. ;
Detre, John A. ;
Golay, Xavier ;
Guenther, Matthias ;
Hendrikse, Jeroen ;
Hernandez-Garcia, Luis ;
Lu, Hanzhang ;
MacIntosh, Bradley J. ;
Parkes, Laura M. ;
Smits, Marion ;
van Osch, Matthias J. P. ;
Wang, Danny J. J. ;
Wong, Eric C. ;
Zaharchuk, Greg .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :102-116
[3]   Multisection cerebral blood flow MR imaging with continuous arterial spin labeling [J].
Alsop, DC ;
Detre, JA .
RADIOLOGY, 1998, 208 (02) :410-416
[4]   Estimation of Labeling Efficiency in Pseudocontinuous Arterial Spin Labeling [J].
Aslan, Sina ;
Xu, Feng ;
Wang, Peiying L. ;
Uh, Jinsoo ;
Yezhuvath, Uma S. ;
van Osch, Matthias ;
Lu, Hanzhang .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) :765-771
[5]   Measuring blood flow by nontriggered 2D phase-contrast MR angiography [J].
Bakker, CJG ;
Hartkamp, MJ ;
Mali, WPTM .
MAGNETIC RESONANCE IMAGING, 1996, 14 (06) :609-614
[6]  
Barnes Stephanie L, 2012, Pharmaceutics, V4, P442, DOI 10.3390/pharmaceutics4030442
[7]   Cerebrospinal fluid flow imaging by using phase-contrast MR technique [J].
Battal, B. ;
Kocaoglu, M. ;
Bulakbasi, N. ;
Husmen, G. ;
Sanal, H. Tuba ;
Tayfun, C. .
BRITISH JOURNAL OF RADIOLOGY, 2011, 84 (1004) :758-765
[8]   Off-resonance correction for pseudo-continuous arterial spin labeling using the optimized encoding scheme [J].
Berry, Eleanor S. K. ;
Jezzard, Peter ;
Okell, Thomas W. .
NEUROIMAGE, 2019, 199 :304-312
[9]   Quantitative Susceptibility Mapping to Assess Cerebral Vascular Compliance [J].
Birkl, C. ;
Langkammer, C. ;
Sati, P. ;
Enzinger, C. ;
Fazekas, F. ;
Ropele, S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (03) :460-463
[10]   DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping [J].
Bollmann, Steffen ;
Rasmussen, Kasper Gade Botker ;
Kristensen, Mads ;
Blendal, Rasmus Guldhammer ;
Ostergaard, Lasse Riis ;
Plocharski, Maciej ;
O'Brien, Kieran ;
Langkammer, Christian ;
Janke, Andrew ;
Barth, Markus .
NEUROIMAGE, 2019, 195 :373-383