Differential Evolution with Improved Mutation Strategy

被引:0
作者
Wan, Shuzhen [1 ]
Xiong, Shengwu [1 ]
Kou, Jialiang [1 ]
Liu, Yi [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, PT I | 2011年 / 6728卷
关键词
trigonometric differential evolution; differential evolution; benchmark function; crossover operation; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution is a powerful evolution algorithm for optimization of real valued and multimodal functions. To accelerate its convergence rate and enhance its performance, this paper introduces a top-p-best trigonometric mutation strategy and a self-adaptation method for controlling the crossover rate (CR). The performance of the proposed algorithm is investigated on a comprehensive set of 13 benchmark functions. Numerical results and statistical analysis show that the proposed algorithm boosts the convergence rate yet maintaining the robustness of the DE algorithm.
引用
收藏
页码:431 / 438
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2002, ADV INTELL SYST FUZZ
[2]   Modified differential evolution (MDE) for optimization of non-linear chemical processes [J].
Babu, B. V. ;
Angira, Rakesh .
COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (6-7) :989-1002
[3]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[4]   A trigonometric mutation operation to differential evolution [J].
Fan, HY ;
Lampinen, J .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (01) :105-129
[5]  
Gong W., 2010, Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, P409, DOI DOI 10.1145/1830483.1830559
[6]  
Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]   Recent advances in differential evolution: a survey and experimental analysis [J].
Neri, Ferrante ;
Tirronen, Ville .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) :61-106
[9]   A differential evolution algorithm with self-adapting strategy and control parameters [J].
Pan, Quan-Ke ;
Suganthan, P. N. ;
Wang, Ling ;
Gao, Liang ;
Mallipeddi, R. .
COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (01) :394-408
[10]   Self-adaptive differential evolution algorithm for numerical optimization [J].
Qin, AK ;
Suganthan, PN .
2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, :1785-1791