Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

被引:177
作者
Bediako, D. Kwabena [1 ]
Solis, Brian H. [2 ]
Dogutan, Dilek K. [1 ]
Roubelakis, Manolis M. [1 ]
Maher, Andrew G. [1 ]
Lee, Chang Hoon [1 ]
Chambers, Matthew B. [1 ]
Hammes-Schiffer, Sharon [2 ]
Nocera, Daniel G. [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
renewable; solar fuels; electrocatalysis; CO2 REDUCTION CATALYSTS; O BOND ACTIVATION; SOLAR-ENERGY; OXYGEN REDUCTION; WATER OXIDATION; BEARING; METAL; METALLOPORPHYRINS; ELECTROREDUCTION; CHALLENGES;
D O I
10.1073/pnas.1414908111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer-electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.
引用
收藏
页码:15001 / 15006
页数:6
相关论文
共 47 条
[1]   Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? [J].
Abbott, Derek .
PROCEEDINGS OF THE IEEE, 2010, 98 (01) :42-66
[2]   Photosynthetic energy conversion: natural and artificial [J].
Barber, James .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :185-196
[3]   Hydrogen-Bond Relays in Concerted Proton-Electron Transfers [J].
Bonin, Julien ;
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel ;
Tard, Cedric .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (03) :372-381
[4]   Electrocatalytic Oxygen Reduction by Iron Tetra-arylporphyrins Bearing Pendant Proton Relays [J].
Carver, Colin T. ;
Matson, Benjamin D. ;
Mayer, James M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5444-5447
[5]   Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold [J].
Chang, CJ ;
Chng, LL ;
Nocera, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1866-1876
[6]   Porphyrin architectures bearing functionalized xanthene spacers [J].
Chang, CJ ;
Yeh, CY ;
Nocera, DG .
JOURNAL OF ORGANIC CHEMISTRY, 2002, 67 (04) :1403-1406
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[9]   Electrochemical approach to the mechanistic study of proton-coupled electron transfer [J].
Costentin, Cyrille .
CHEMICAL REVIEWS, 2008, 108 (07) :2145-2179
[10]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436