In this paper, we study the homoclinic solutions of the following second- order Hamiltonian system mu - L(t)u + Delta W(t, u) = 0 where t is an element of R, u is an element of R-N, L:R -> R(N)x(N) and W : R x R-N -> R. Applying the symmetric Mountain Pass Theorem, we establish a couple of sufficient conditions on the existence of infinitely many homoclinic solutions. Our results significantly generalize and improve related ones in the literature. For example, L( t) is not necessary to be uniformly positive definite or coercive; through W( t, x) is still assumed to be superquadratic near vertical bar x vertical bar = infinity it is not assumed to be superquadratic near x = 0. (C) 2015 WILEY- VCH Verlag GmbH & Co. KGaA, Weinheim
机构:
Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Liu, Guanggang
Li, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
Li, Yong
Yang, Xue
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R ChinaLiaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
Xiao, Li
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
Lin, Xiaoyan
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China