Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory

被引:36
作者
Liu, Yaqing [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
dispersive shock wave; high-order Jaulent-Miodek equation; Lax pair; rarefaction wave; Whitham modulation equation; SMALL DISPERSION LIMIT; SELF-SIMILAR SOLUTIONS; KORTEWEG-DE-VRIES; INITIAL DISCONTINUITY; SHOCK-WAVES; EVOLUTION; TRANSFORMATIONS; SYSTEMS;
D O I
10.1111/sapm.12513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Riemann problem of the high-order Jaulent-Miodek (JM) equation with initial data of step discontinuity is explored by Whitham modulation theory, which is a modified version of the well-known finite-gap integration method. Based on the reparameterization of the solution with the use of algebraic resolvent of the polynomial defining the solution, the periodic wave solutions of the high-order JM equation are described by the elliptic function along with the Whitham modulation equations. Complete classification of possible wave structures of the high-order JM equation is given for all possible jump conditions at the discontinuity initial value. The analytic results proposed in this work are confirmed by direct numerical simulations.
引用
收藏
页码:588 / 630
页数:43
相关论文
共 52 条
[1]   NUMERICAL SOLUTION OF THE SMALL DISPERSION LIMIT OF THE CAMASSA-HOLM AND WHITHAM EQUATIONS AND MULTISCALE EXPANSIONS [J].
Abenda, S. ;
Grava, T. ;
Klein, C. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) :2797-2821
[2]   Whitham modulation theory for the two-dimensional Benjamin-Ono equation [J].
Ablowitz, Mark ;
Biondini, Gino ;
Wang, Qiao .
PHYSICAL REVIEW E, 2017, 96 (03)
[3]   On the Whitham system for the radial nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Cole, Justin T. ;
Rumanov, Igor .
STUDIES IN APPLIED MATHEMATICS, 2019, 142 (03) :269-313
[4]   Whitham modulation theory for the Kadomtsev-Petviashvili equation [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Wang, Qiao .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2204)
[5]   MODIFIED HAMILTONIAN-SYSTEMS AND CANONICAL-TRANSFORMATIONS ARISING FROM THE RELATIONSHIP BETWEEN GENERALIZED ZAKHAROV-SHABAT AND ENERGY-DEPENDENT SCHRODINGER-OPERATORS [J].
ALONSO, LM ;
GUERRERO, FG .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) :2497-2503
[6]   ON CNOIDAL WAVES AND BORES [J].
BENJAMIN, TB ;
LIGHTHILL, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 224 (1159) :448-460
[7]   Quasi-periodic solutions of the negative-order Jaulent-Miodek hierarchy [J].
Chen, Jinbing .
REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (03)
[8]   Dispersive Riemann problems for the Benjamin-Bona-Mahony equation [J].
Congy, T. ;
El, G. A. ;
Hoefer, M. A. ;
Shearer, M. .
STUDIES IN APPLIED MATHEMATICS, 2021, 147 (03) :1089-1145
[9]   Nonlinear Schrodinger equations and the universal description of dispersive shock wave structure [J].
Congy, T. ;
El, G. A. ;
Hoefer, M. A. ;
Shearer, M. .
STUDIES IN APPLIED MATHEMATICS, 2019, 142 (03) :241-268
[10]   Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion [J].
Congy, T. ;
Ivanov, S. K. ;
Kamchatnov, A. M. ;
Pavloff, N. .
CHAOS, 2017, 27 (08)