Hamiltonian stability of Lagrangian tori in toric Kahler manifolds

被引:5
作者
Ono, Hajime [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
基金
日本学术振兴会;
关键词
Lagrangian submanifold; Toric Kahler manifold; Hamiltonian stability;
D O I
10.1007/s10455-006-9037-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, J, omega) be a compact toric Kahler manifold of dim(C) M = n and L a regular orbit of the T-n-action on M. In the present paper, we investigate Hamiltonian stability of L, which was introduced by Y.-G. Oh (Invent. Math. 101, 501-519 (1990); Math. Z. 212, 175-192) (1993)). As a result, we prove any regular orbit is Hamiltonian stable when (M, omega) = (CPn, omega(FS)) and (M, omega) = (CPn1 x CPn2 ,a omega(FS) circle plus b omega(FS)), where omega(FS) is the Fubini-Study Kahler form and a and b are positive constants. Moreover, they are locally Hamiltonian volume minimizing Lagrangian submanifolds.
引用
收藏
页码:329 / 343
页数:15
相关论文
共 7 条
[1]  
Abreu M., 2003, SYMPLECTIC CONTACT T, P1
[2]   Calibrated fibrations on noncompact manifolds via group actions [J].
Goldstein, E .
DUKE MATHEMATICAL JOURNAL, 2001, 110 (02) :309-343
[3]  
GUILLEMIN V, 1994, J DIFFER GEOM, V40, P285
[4]   Integral geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in S2 x S2 [J].
Iriyeh, H ;
Ono, H ;
Sakai, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (10) :167-170
[5]   VOLUME MINIMIZATION OF LAGRANGIAN SUBMANIFOLDS UNDER HAMILTONIAN DEFORMATIONS [J].
OH, YG .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (02) :175-192
[6]   2ND VARIATION AND STABILITIES OF MINIMAL LAGRANGIAN SUBMANIFOLDS IN KAHLER-MANIFOLDS [J].
OH, YG .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :501-519
[7]  
ONO H, UNPUB HAMILTONIAN ST, V2