Freiman's theorem in an arbitrary abelian group

被引:88
作者
Green, Ben
Ruzsa, Imre Z.
机构
[1] Ctr Math Sci, Cambridge CB3 0WA, England
[2] Hungarian Acad Sci, Alfred Renyi Math Inst, H-1364 Budapest, Hungary
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2007年 / 75卷
关键词
D O I
10.1112/jlms/jdl021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A famous result of Freiman describes the structure of finite sets A subset of Z with small doubling property. If vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained within a multidimensional arithmetic progression of dimension d(K) and size f(K) vertical bar A vertical bar. Here we prove an analogous statement valid for subsets of an arbitrary abelian group.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 14 条
[1]  
Bilu Y, 1999, ASTERISQUE, P77
[2]  
Bogolio?boff N., 1939, ANN CHAIRE PHYS MATH, V4, P185
[3]  
Cassels J., 1997, CLASSICS MATH
[4]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419
[5]   On small sumsets in (Z/2Z)n [J].
Deshouillers, JM ;
Hennecart, F ;
Plagne, A .
COMBINATORICA, 2004, 24 (01) :53-68
[6]  
Freiman G. A., 1973, T MATH MONOGRAPHS, V37
[7]   Sets with small sumset and rectification [J].
Green, B ;
Ruzsa, IZ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :43-52
[8]  
GREEN BJ, EDINBURGH MIT LECT N
[9]  
PLUNNECKE H, 1969, BMWFGMD22
[10]  
Rudin W, 1962, INTERSCIENCE TRACTS, V12