Influence of gas expansion on process parameters in non-thermal plasma plug-flow reactors: A study applied to dry reforming of methane

被引:54
作者
Pinhao, N. [1 ]
Moura, A. [1 ]
Branco, J. B. [2 ]
Neves, J. [3 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, Estr Nacl 10, P-2695066 Bobadela, Portugal
[3] Univ Lisbon, Inst Super Tecn, Lab Aceleradores & Tecnol Radiacao, Estr Nacl 10, P-2695066 Bobadela, Portugal
关键词
DBD reactor; Conversion; Selectivity; Energy efficiency; Methane dry reforming; DIELECTRIC-BARRIER DISCHARGE; OPTICAL-EMISSION SPECTROSCOPY; CARBON-DIOXIDE; HIGHER HYDROCARBONS; PARTIAL OXIDATION; LOW-TEMPERATURE; CONVERSION; CO2; OXYGEN; CATALYST;
D O I
10.1016/j.ijhydene.2016.04.148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chemical reactions that take place in non-thermal plasma plug-flow type reactors can change the number of particles, the volumetric flow rate and the concentration of species, even if they do not take part in chemical reactions themselves. These changes, however, are frequently neglected in the computation of parameters characterizing the chemical process thus introducing a systematic error in parameters such as conversion, selectivity, yield, efficiency, residence time, carbon balance and energy efficiency. We discuss errors arising from this neglect, the methods currently used to take these factors into account and propose a simple procedure to obtain correct values, based on an internal standard. This procedure is applied on methane conversion with CH4/CO2 or He/CH4/CO2 mixtures where we found that neglecting the volumetric flux change introduces errors of up to 20% on process parameters. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9245 / 9255
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2010, THESIS
[2]   Fluid Modeling of the Conversion of Methane into Higher Hydrocarbons in an Atmospheric Pressure Dielectric Barrier Discharge [J].
De Bie, Christophe ;
Verheyde, Bert ;
Martens, Tom ;
van Dijk, Jan ;
Paulussen, Sabine ;
Bogaerts, Annemie .
PLASMA PROCESSES AND POLYMERS, 2011, 8 (11) :1033-1058
[3]   OZONE SYNTHESIS FROM OXYGEN IN DIELECTRIC BARRIER DISCHARGES [J].
ELIASSON, B ;
HIRTH, M ;
KOGELSCHATZ, U .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1987, 20 (11) :1421-1437
[4]   Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma [J].
Ghorbanzadeh, A. M. ;
Lotfalipour, R. ;
Rezaei, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) :293-298
[5]   Methane conversion into acetylene in a microwave plasma: Optimization of the operating parameters [J].
Heintze, M ;
Magureanu, M .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2276-2283
[6]  
Heintze M., 2012, HYDROGEN SYNGAS PROD, P353
[7]   Kinetic modeling of plasma methane conversion in a dielectric barrier discharge [J].
Indarto, Antonius ;
Coowanitwong, Nowarat ;
Choi, Jae-Wook ;
Lee, Hwaung ;
Song, Hyung Keun .
FUEL PROCESSING TECHNOLOGY, 2008, 89 (02) :214-219
[8]   Effect of gas temperature on partial oxidation of methane in plasma reforming [J].
Jo, Sungkwon ;
Lee, Dae Hoon ;
Song, Young-Hoon .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (31) :13643-13648
[9]   Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion [J].
Kado, S ;
Sekine, Y ;
Nozaki, T ;
Okazaki, K .
CATALYSIS TODAY, 2004, 89 (1-2) :47-55
[10]   Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects [J].
Kim, HH .
PLASMA PROCESSES AND POLYMERS, 2004, 1 (02) :91-110