A SELBERG INTEGRAL TYPE FORMULA FOR AN sl2 ONE-DIMENSIONAL SPACE OF CONFORMAL BLOCKS

被引:0
作者
Varchenko, A. [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
Conformal blocks; invariant polynomials; HYPERGEOMETRIC CORRELATORS; WZW MODELS; ALGEBRA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For distinct complex numbers z(1), ... , z(2) N, we give a polynomial P (y(1), ... , y(2) N) in the variables y(1), ... , y(2) N which is homogeneous of degree N, linear with respect to each variable, sl(2)-invariant with respect to a natural sl(2)-action, and is of order N - 1 at (y(1), ... , y(2) N) - (z(1), ... , z(2) N). We give also a Selberg integral type formula for the associated one-dimensional space of conformal blocks.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 14 条
  • [1] [Anonymous], 2000, ADV STUD PURE MATH
  • [2] [Anonymous], J AM MATH SOC
  • [3] ON ALGEBRAIC EQUATIONS SATISFIED BY HYPERGEOMETRIC CORRELATORS IN WZW MODELS .1.
    FEIGIN, B
    SCHECHTMAN, V
    VARCHENKO, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (01) : 173 - 184
  • [4] ON ALGEBRAIC EQUATIONS SATISFIED BY HYPERGEOMETRIC CORRELATORS IN WZW MODELS .2.
    FEIGIN, B
    SCHECHTMAN, V
    VARCHENKO, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (01) : 219 - 247
  • [5] Felder G, 2003, MATH RES LETT, V10, P671
  • [6] Kazhdan D., 1994, J. Amer. Math. Soc., V7, P383, DOI [10.1090/S0894-0347-1994-1239507-1, DOI 10.2307/2152763.MR1239507]
  • [7] Kazhdan D., 1994, J. Am. Math. Soc., V7, P335, DOI [10.1090/S0894-0347-1994-1239506-X, 10.1090/s0894-0347-1993-99999-x, DOI 10.1090/S0894-0347-1993-99999-X]
  • [8] Kazhdan D., 1994, J AM MATH SOC, V7, P335
  • [9] KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
  • [10] LOOIJENGA E, 2008, ARXIV08104310V1MATHQ