Unique determination of a time-dependent potential for wave equations from partial data

被引:27
作者
Kian, Yavar [1 ]
机构
[1] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 04期
关键词
Inverse problems; Wave equation; Time-dependent potential; Uniqueness; Carleman estimates; Partial data; STABLE DETERMINATION; INVERSE PROBLEMS; HYPERBOLIC DIRICHLET; CALDERON PROBLEM; STABILITY; COEFFICIENT;
D O I
10.1016/j.anihpc.2016.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of determining a time-dependent potential q, appearing in the wave equation partial derivative(2)(t)u -Delta(x)u + q(t,x)u = 0 in Q = (0,T) x Omega with T > 0 and Omega a C-2 bounded domain of R-n, n >= 2, from partial observations of the solutions on partial derivative Q. More precisely, we look for observations on partial derivative Q that allows to recover uniquely a general time-dependent potential q without involving an important set of data. We prove global unique determination of q E L-infinity (Q) from partial observations on partial derivative Q. Besides being nonlinear, this problem is related to the inverse problem of determining a semilinear term appearing in a nonlinear hyperbolic equation from boundary measurements. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:973 / 990
页数:18
相关论文
共 34 条
[1]  
[Anonymous], MATH APPL
[2]  
Bellassoued M., 2006, APPL ANAL, V85, P1219
[3]   Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem [J].
Bellassoued, Mourad ;
Choulli, Mourad ;
Yamamoto, Masahiro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) :465-494
[4]   Stability estimate for a hyperbolic inverse problem with time-dependent coefficient [J].
Ben Aicha, Ibtissem .
INVERSE PROBLEMS, 2015, 31 (12)
[5]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668
[6]   DOUBLE LOGARITHMIC STABILITY IN THE IDENTIFICATION OF A SCALAR POTENTIAL BY A PARTIAL ELLIPTIC DIRICHLET-TO-NEUMANN MAP [J].
Choulli, M. ;
Kian, Y. ;
Soccorsi, E. .
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (03) :78-94
[7]   STABLE DETERMINATION OF TIME-DEPENDENT SCALAR POTENTIAL FROM BOUNDARY MEASUREMENTS IN A PERIODIC QUANTUM WAVEGUIDE [J].
Choulli, Mourad ;
Kian, Yavar ;
Soccorsi, Eric .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) :4536-4558
[8]   STABILITY OF THE DETERMINATION OF A TIME-DEPENDENT COEFFICIENT IN PARABOLIC EQUATIONS [J].
Choulli, Mourad ;
Kian, Yavar .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (02) :143-160
[9]   Inverse hyperbolic problems with time-dependent coefficients [J].
Eskin, G. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1737-1758
[10]   A new approach to hyperbolic inverse problems [J].
Eskin, G. .
INVERSE PROBLEMS, 2006, 22 (03) :815-831