Mixed fractional Sobolev spaces and elliptic PDEs with singular integral boundary data

被引:1
作者
Merker, Jochen [1 ]
机构
[1] Leipzig Univ Appl Sci, Ctr Math & Nat Sci, PF 30 11 66, D-04251 Leipzig, Germany
关键词
fractional Sobolev spaces; semilinear elliptic PDE; singular data; singular integrals;
D O I
10.1002/mma.6059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show how to use mixed fractional Sobolev spaces to prove existence of very weak solutions to singular semilinear elliptic PDEs subject to singular integral Neumann boundary conditions. Particularly, we obtain solutions with infinite normal derivatives on the boundary, ie, solutions with large derivatives.
引用
收藏
页码:2859 / 2867
页数:9
相关论文
共 10 条
[1]   On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation [J].
Avalishvili, G. ;
Avalishvili, M. ;
Gordeziani, D. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (04) :566-571
[2]  
Cho Y, 2006, TOPOLOGICAL DEGREE T, V10
[3]   DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES [J].
Fiscella, Alessio ;
Servadei, Raffaella ;
Valdinoci, Enrico .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :235-253
[4]  
Lang S, 1993, REAL FUNCTIONAL ANAL, V142
[5]  
Merker J, 2018, INT C FRACT DIFF ITS
[6]   VERY WEAK SOLUTIONS OF LINEAR ELLIPTIC PDES WITH SINGULAR DATA AND IRREGULAR COEFFICIENTS [J].
Merker, Jochen .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (01) :3-20
[7]   Very weak solutions of Poisson's equation with singular data under Neumann boundary conditions [J].
Merker, Jochen ;
Rakotoson, Jean-Michel .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) :705-726
[8]  
Schauder J., 1930, Studia Math, V2, P183
[9]   Abstract Elliptic Equations with Integral Boundary Conditons [J].
Shakhmurov, Veli .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2016, 37 (04) :625-642
[10]  
Skrypnik I.V., 1994, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems